Little Alamance Creek (Burlington Park) Stream Restoration 2013 Monitoring Report Monitoring Year 2 of 5

Alamance County, NC Cape Fear River Basin Cataloging Unit: 03030002 NCEEP Project Number: 92372 NCEEP Contract Number: 4998

Submitted To:

North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program 1652 Mail Service Center Raleigh, NC 27699-1652

FINAL – 2013 Monitoring Report – Year 2 of 5

Project Construction Completed: 2012 Data Collection for Monitoring Year 2 of 5 Report Submitted: January 2014

Little Alamance Creek (Burlington Park) Stream Restoration 2013 Monitoring Report Monitoring Year 2 of 5

Alamance County, NC Cape Fear River Basin

Submitted to: North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program 1652 Mail Service Center Raleigh, NC 27699-1652

> Prepared by: EEE Consulting, Inc. 601 Cascade Pointe Lane, Suite 101 Cary, NC 27513

> > Project Manager: Ray Bode, PWS (919) 650-2463 ext. 225 rbode@eee-consulting.com

> > > January 2014

FINAL

TABLE OF CONTENTS

1.	Executive Summary/Project Abstract	.2
	Methodology	
	2.1 Stream Survey Methodology	
	2.2 Vegetation Survey Methodology	
	References	

APPENDICES, FIGURES, and TABLES

Figure 1:	Vicinity Map
Table 1:	Project Components and Mitigation Credits
Table 2:	Project Activity and Reporting History
Table 3:	Project Contacts Table
Table 4:	Project Attribute Table

Appendix B: Visual Assessment Data

Figure 2:	Current Condition Plan View
Figure 3:	Conservation Easement Marked Posts
Figure 4:	Final Conservation Easement Plat
Figure 5:	Conservation Easement Coordinate List
Table 5:	Visual Stream Morphology Stability Assessment
Table 6:	Vegetation Condition Assessment
Photo Log 1:	Established Photo Stations
Photo Log 2:	Vegetation Plot Photos

Appendix C: Vegetation Plot Data

Table 7:Vegetation Plot Success by Project Asset Type

 Table 8:
 CVS Stem Count Total and Planted with/without Livestakes by Plot and Species

Appendix D: Stream Survey Data

Figure 6:	Cross Section with Annual Overlays
Figure 7:	Longitudinal Profiles with Annual Overlays
Figure 8:	Pebble Counts with Annual Overlays
Table 9:	Stream Bank Erosion Pin Data Table
Table 10a:	Baseline Stream Data Summary
Table 10b:	Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic
	Containment Parameter Distributions)
Table 11a:	Monitoring – Cross-Section Morphology Data Table
Table 11b:	Monitoring – Stream Reach Morphology Data Table

Appendix E: Hydrologic Data

Table 12:	Verification of Bankfull Events
Figure 9:	Monthly Rainfall Data

Little Alamance (Burlington Park) Stream Restoration; NCEEP Project No. 92372; NCEEP Contract No. 4998; Monitoring Year 2 of 5; Submitted: January 2014 FINAL

1.0 EXECUTIVE SUMMARY / PROJECT ABSTRACT

The primary goals of this stream restoration project focus on improving water quality, enhancing flood attenuation, and restoring aquatic habitat. These goals will be accomplished by the following objectives:

- Reducing non-point sources of pollution associated with former lawn maintenance in the park area by providing a vegetative buffer adjacent to Little Alamance Creek and its unnamed tributary (UT) and the installation of stormwater best management practices to treat surface runoff. The riparian buffer will remain in a State-owned conservation easement in perpetuity.
- Reducing sedimentation on-site and in downstream receiving waters through a reduction of bank erosion associated with current vegetation maintenance practices and by providing a forested vegetative buffer adjacent to Little Alamance Creek and its tributary.
- Reestablishing stream stability and the capacity to transport watershed flows and sediment loads by restoring stable dimension, pattern, and profile.
- Promoting floodwater attenuation through increased flood storage capacity by construction of bankfull benches along Little Alamance Creek and its tributary.
- Improving aquatic habitat by enhancing stream bed variability.

The Site consists of 1,293 linear feet of enhanced (Level I and II) channel along Little Alamance Creek and its UT. The project is located in City Park in the City of Burlington, Alamance County, North Carolina (Figure 1). The surrounding land use is recreational and the project is easily accessible by the public. Little Alamance Creek and its UT are located in the 8-digit Hydrologic Unit Code (HUC) 03030002; the 14-digit Local Watershed Unit HUC 03030002-040010; and the North Carolina Division of Water Quality (NCDWQ) Subbasin 03-06-03 (NCDWQ, 2005). The project lies within the Southern Outer Piedmont ecoregion of the Piedmont physiographic province of NC (Griffith *et al.*, 2002). The North Carolina Ecosystem Enhancement Program (NCEEP) has identified the Cape Fear HUC 03030002, and in particular Little Alamance Creek, in their Local Watershed Plan as needing repair along with conservation opportunities. Watersheds in this plan exhibit the need and opportunity for stream and riparian buffer restoration (NCDENR, 2001). In 2000, Little Alamance Creek was listed as impaired by the NCDWQ due to poor stream biological ratings (NCEEP, 2008).

Little Alamance Creek was originally planted in April, 2012. On September 11, 2012, the site was inspected by NCEEP and vegetative sampling reported higher mortality than contractually permissible. Of the 15 inspection plots, 6 did not meet the 80 percent survival warranty. The areas identified as needing supplemental planting were re-planted on December 12, 2012. Monitoring Year 1 efforts showed that the site is currently meeting vegetation success criteria of 320 stems per acre at most plot locations. However, monitoring year 2 efforts report the majority of the site is not meeting the success criteria. Monitoring in year 1 occurred in March and was

Little Alamance (Burlington Park) Stream Restoration; NCEEP Project No. 92372; NCEEP Contract No. 4998; Monitoring Year 2 of 5; Submitted: January 2014

therefore difficult to distinguish between volunteer and planted stems as there were no leaves on the plants. This made identification difficult. Only vegetation plots 1 and 6 have met the 320 stems per acre requirement (Appendix C; Table 7). Volunteer species are establishing on site as expected and thus increasing the overall stems per acre. Volunteer species have increased the stems per acre over 320 for all plots except vegetation plot 5, 7, and 8. Several invasive species were identified throughout the project reach. These species include white mulberry (Morus alba), tree of heaven (Ailanthus altissima), Chinese privet (Ligustrum sinense), Japanese privet (Ligustrum japonicum), Mostly these species occurred at very low density as single isolated stems and therefore do not impose a treat. Only areas with a cluster of stems were noted and recorded. Three areas were identified with invasive species in the conservations easement (Figure 2) in monitoring year 1. Along the upper reaches of the UT, multiflora rose (Rosa *multiflora*) was observed. These areas are negligible in size and are represented as point features. Along the upper reach of the mainstem, Chinese privet (Ligustrum sinense) was observed. This area was also negligible in size and is represented as a point feature. Three additional problems were identified in monitoring year 2 efforts (Figure 2). These sites were observed in Year 1, but have grown to warrant reporting. In vegetation plot 1, by cross section 2, several stems of Chinese privet and white mulberry was identified. English ivy (Hedera helix) was also noted. By cross section 9, several stems of multiflora rose was identified along both the right and left bank. Downstream of vegetation plot 8, along the left bank, virginsbower (Clematis terniflora) was observed in unusually high density. Overall, the presence of invasive species is minor, covering approximately 7 percent of the planted easement. These areas will continue to be monitored in the upcoming monitoring years. In addition, evidence of recent beaver activity (fresh chews and tracks) were observed throughout the entire length of the project reach. No other problems areas were observed.

In general, the Little Alamance Creek Stream Restoration Site is in very good condition. All structures are intact and performing as intended. The Monitoring Year 1 and 2 thalweg has not deviated from the design thalweg. Monitoring year 1 identified one area along the UT downstream of cross section 14 that had lateral bank erosion for approximately 75 feet (Figure 2). In monitoring year 2, this area was noted to be increasing in severity. In 2013, there were several heavy rain events that caused high flow and flooding (Appendix E). As a result, several new stream problem areas have occurred (Figure 2). Immediately downstream of cross section 1, the left bank displayed lateral bank erosion for approximately 100 feet. This was observed in Monitoring Year 1, but the storm events have increased the severity of erosion to warrant reporting. Immediately downstream of cross section 9, the left bank displayed lateral bank erosion for approximately 30 feet. At the confluence of the UT and mainstem, a mid-channel bar has formed. There was also lateral bank erosion at the confluence along the left bank for approximately 50 feet. Minor changes in the mainstem bed profile have occurred during Monitoring Year 2. These changes are likely a result of substrate mobilization during the large flood events. This type of substrate movement is characteristic of natural geomorphic processes and does not appear to pose a risk for vertical incision or lateral bank erosion. These areas will continue to be monitored. Along the UT, two pools displayed significant aggradation as seen on the longitudinal profile graphic. These areas will continue to be monitored in the upcoming monitoring years. No other problems areas were observed. Two crest gauges were installed

Little Alamance (Burlington Park) Stream Restoration; NCEEP Project No. 92372; NCEEP Contract No. 4998; Monitoring Year 2 of 5; Submitted: January 2014

during Monitoring Year 1; one gauge along the mainstem of Little Alamance Creek and one gauge along the UT. These gauges were checked in Monitoring Year 2 (Appendix E).

Wetland mitigation is not a part of this project.

Summary information/data related to the occurrence of items such as beaver or encroachment and statistics related to performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly the Restoration Plan). These documents are available on NCEEP's website. All raw data supporting the tables and figures in the appendices is available from NCEEP upon request.

2.0 METHODOLOGY

All monitoring methodologies follow NCEEP's 2011 *Monitoring Requirements and Performance Standards for Stream and/or Wetland Mitigation* (NCEEP, 2011). This monitoring report is consistent with NCEEP's *Monitoring Report Template Version 1.5* adopted June 8, 2012. GPS data was collected using sub-meter accuracy Trimble Geo XH handheld unit. Stream and vegetation problems areas were identified and noted in the field on As-Built Plan Sheets prepared by ARCADIS G&M of North Carolina (ARCADIS, 2012). Twenty permanent photo stations were established during the project set up by EEE Consulting, Inc. (EEE) and photographs were taken from these locations (Figure 2). Photographs were taken at a high resolution using a Sony Cyber-shot 14.1 megapixel digital camera.

2.1 STREAM SURVEY METHODOLOGY

Prior to Year 1 monitoring efforts, EEE established eight permanent riffle cross-sections and six permanent pool cross sections (Figure 2). GPS points were collected on both banks of each established cross section. The entire length of mitigation, 2,725 linear feet of stream profile, was surveyed. Stream monitoring and geomorphological surveys were preformed consistent with the USACE 2003 *Stream Mitigation Guidelines* and the USDA 1994 Forest Service Manual *Stream Channel Reference Sites: An Illustrated Guide to Field Technique* (USACE, 2003; Harrelson *et al*, 1994). Stream survey data was collected using a Nikon total station with a Recon data logger and is georeferenced in NAD83-State Plane Feet-FIPS3200. The data were analyzed using RIVERMorph. Pebble counts were conducted consistent with the 1954 Wolman Pebble Count technique (modified by Rosgen, 1996). A random sample of 100 pebbles from each cross section was collected within the wetted perimeter of the channel. Samples were not taken from the banks. Photographs were taken at each cross section. A photo was taken from the left bank looking towards the right bank.

2.2 VEGETATION SURVEY METHODOLOGY

Prior to Year 1 monitoring efforts, EEE established eight vegetation plots per the CVS-EEP vegetation monitoring protocol (Figure 2). Five plots are 10 meters by 10 meters in size and 2

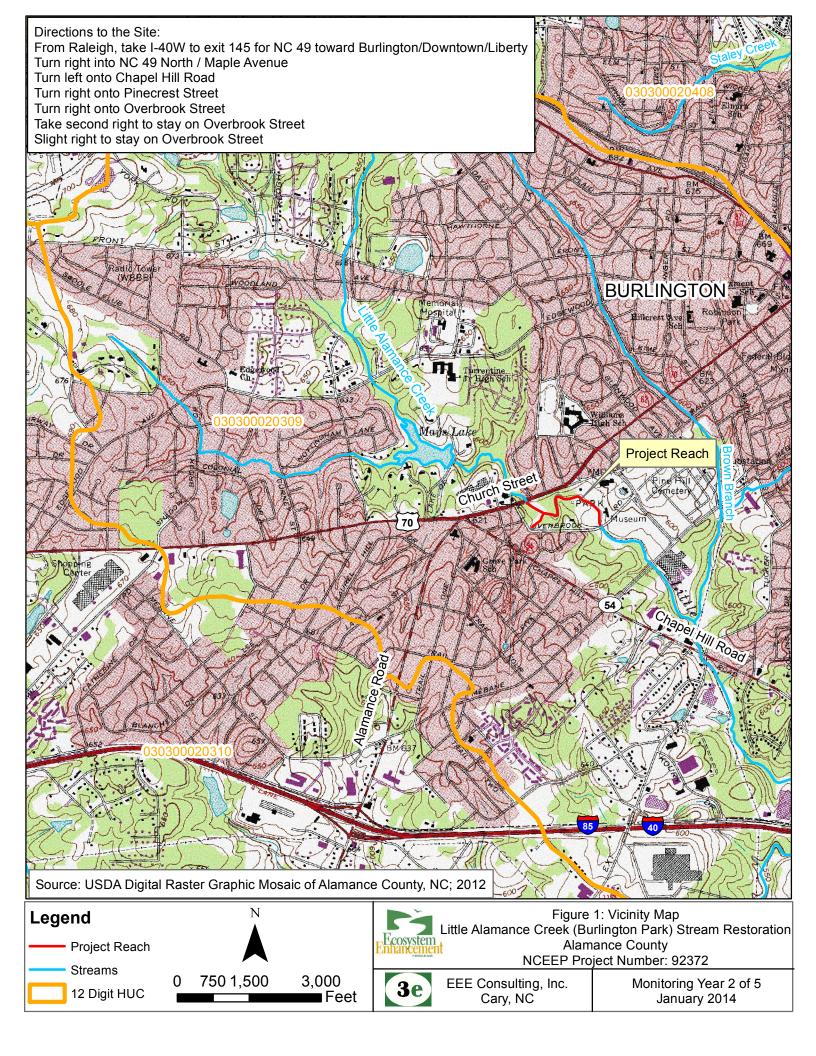
Little Alamance (Burlington Park) Stream Restoration; NCEEP Project No. 92372; NCEEP Contract No. 4998; Monitoring Year 2 of 5; Submitted: January 2014

plots, (VP 6 and 7) are 20 meters by 5 meters in size. GPS points were collected all four corners of each established vegetation plot. Vegetation monitoring was performed in accordance with the 2008 CVS-EEP Protocol for Recording Vegetation for Level 1-2 Plot Sampling Only, Version 4.2 (Lee *et al*, 2008). Level 2 sampling was performed for each vegetation plot. Each corner of the vegetation plot was marked with steel electrical metallic tubing (EMT) driven into the ground. Because the project is within a public park, minimal flagging was used to mark the stems and the vegetation plot corner pins. Minimal orange flagging was used to mark only planted stems during vegetation counts. Photographs were taken at each vegetation plot from the southwest corner facing the northeast corner.

3.0 **REFERENCES**

- ARCADIS G&M of North Carolina, 2012. As-Built Survey of Little Alamance Creek Stream Restoration. Prepared for the NC Ecosystem Enhancement Program.
- Griffith, Glenn, J. Omemik, J. Comstock, 2002. Ecoregions of North Carolina Regional Descriptions. U.S. Department of Agriculture, Natural Resources Conservation Service. Corvallis. OR.
- Harrelson, Cheryl C., C.L. Rawlins, John P. Potyondy, 1994. US Department of Agriculture, Forest Service. Stream Channel Reference Sites: An Illustrated Guide to Field Technique. Available URL: <u>http://www.fs.fed.us/rm/pubs_rm/rm_gtr245.pdf</u>. [Date Accessed: 4 January 2013].
- Lee, Michael T., R. K. Peet, S. D. Roberts, and T. R. Wentworth. 2006. CVS-EEP Protocol for Recording Vegetation, Version 4.0 Available URL: <u>http://cvs.bio.unc.edu/methods.htm</u>. [Date Accessed: 4 January 2013].
- NC Division of Water Quality, 2005. Cape Fear River Basin Water Quality Plan. Available URL: <u>http://portal.ncdenr.org/web/wq/ps/bpu/basin/capefear/2005</u>. [Date Accessed: 4 January 2013].
- NC Department of Environment and Natural Resources, 2001. Watershed Restoration Plan for the Cape Fear River Basin. Prepared by: NCDENR, NCDWQ, and NCWRP. Available URL: <u>http://www.nceep.net/services/restplans/cap e_fear_2001.pdf</u>. [Date Accessed: 4 January 2013].
- NC Ecosystem Enhancement Program, 2008. Little Alamance, Travis, & Tickle Creek Watershed Report & Project Atlas: An Ecosystem Enhancement Program Funded Local Watershed Plan Phase III. Prepared by Piedmond Triad Council of Governments. Available URL: <u>http://www.ptcog.org/planning_services/environmental_planning/documents/water_LATTPhaseIII.</u> <u>pdf.</u> [Date Accessed: 4 January 2013].
- NC Ecosystem Enhancement Program, 2011. Monitoring Requirements and Performance Standards for Stream and/or Wetland Mitigation. Available URL: <u>http://portal.ncdenr.org/c/document_library/get_file?p_1_id=1169848&folderId=2288101&name=D_LFE-39234.pdf</u>. [Date Accessed: 4 January 2013].

RIVERMorph Stream Restoration Software, Version 5.1.0. Rivermorph LLC.


Rosgen, D.L., 1996. Applied River Morphology. Wildland Hydrology, Pagosa Springs. CO.

Little Alamance (Burlington Park) Stream Restoration; NCEEP Project No. 92372; NCEEP Contract No. 4998; Monitoring Year 2 of 5; Submitted: January 2014

US Army Corps of Engineers, 2003. Stream Mitigation Guidelines. Prepared by: USACE, NCDWQ, USEPA, NCWRC. Available URL: <u>http://www.in.gov/idem/files/headwater_nc_stream_mitigation_guide.pdf</u>. [Date Accessed: 4 January 2013].

Appendix A: Project Vicinity Map and Background Tables

Figure 1: Project Vicinity Map Table 1: Project Components and Mitigation Credits Table 2: Project Activity and Reporting History Table 3: Project Contacts Table Table 4: Project Attribute Table

							Mitigatio	on Credi	ts					
	5	Stream		Ri	parian \	Vetland			Wetland	В	uffer		Nitrogen trient Offset	Phosphorous Nutrient Offse
Туре		R	RE	F	र	RE		R	RE					
Totals	1:	293	0											
					ľ		Project C	ompone	ents					•
Project Component -o Reach ID	r-	Stationing/Location *			Existing Footage/Acreage		Approach (PI, PII etc.)		Restoration Restoratio Equivale	on	Restoration Footage or Acreage**	Mitigation Ratio		
Reach I (EII)				-25-10			3	32.5		PIII	R		13	2.5:1
Reach I (EI)				-75-11 -25-15			4	12.5			R		206	1.5:1
Reach II – Tributary	' (EI)			-25-14			43	32.5		PIII	R		204	1.5:1
Reach III (EII)			15-	-50-19)+00		32	27.5			R		106	2.5:1
Reach IV (EI)				-30-21 -60-26			63	32.5		PIII	R		328	1.5:1
Reach V (EII)				-50-27			5	57.5		R			15	2.5:1
Reach VI (EII)			27+	-25-28	8+50		1(102.5			R		20	2.5:1
Reach VI (EI) 31+75-3			-75-33	8+00		14	147.5 —			R		83	1.5:1	
Reach VI (R)		28+50-31+50			2	278 PI		R		220	1:1			
Reach VII (EII)			33+50-36+50		3	315 —		R		98	2.5:1			
	r —					C	omponen	t Summ	ation		1			
Restoration Level Stream Credit Length** (linear feet) Ripariar		iparian (acre	res)		on-riparian (acre			uffer are fee	et)	Upland (acres)				
					River	rine	Non-River	rine						
Restoration		220												
Enhancement														
Enhancement I		821												
Enhancement II		252												
Creation														
Preservation High Quality														
Preservation														
							BMP E	Elements	5					
Element	L	ocation			Purpos	e/Funct	ion				Notes			
LS	F	Reach 1												
LS	F	Reach 4												

*Stationing/Location is not exact, but based on the stationing provided in the Record Drawings dated 10/2012.

**Credit Length is based on nearest point method determined by EEP staff. Reduced credits reflect pre-existing sewer & water easements and reduced buffer widths.

Table 2. Project Activity and Reporting HistoryLittle Alamance Creek (Burlington Park) Stream Restoration/EEP Number (92372)

Elapsed Time Since Grading Complete: 2 yrs 1 month

Elapsed Time Since Planting Complete: 2 yrs 1 month

Number of Reporting Years¹: 2

Activity or Deliverable	Data Collection Complete	Completion or Delivery
Institution Date	Nov-06	N/A
Categorical Exclusion	Sep-07	N/A
404 Permit Date	Apr-08	N/A
Restoration Plan	Jan-08	N/A
Final Design – Construction Plans	Sep-10	N/A
Construction	Feb-12	Apr-12
Seeding, bare roots, and live stake planting	Feb-12	Apr-12
Bare Root - Supplemental Planting	N/A	Dec-12
Mitigation Plan / As-built (Year 0 Monitoring - baseline)	N/A	N/A
Year 1 Monitoring	Mar-13	Jun-13
Year 2 Monitoring	Nov-14	Jan-14
Year 3 Monitoring	TBD	TBD
Year 4 Monitoring	TBD	TBD
Year 5 Monitoring	TBD	TBD

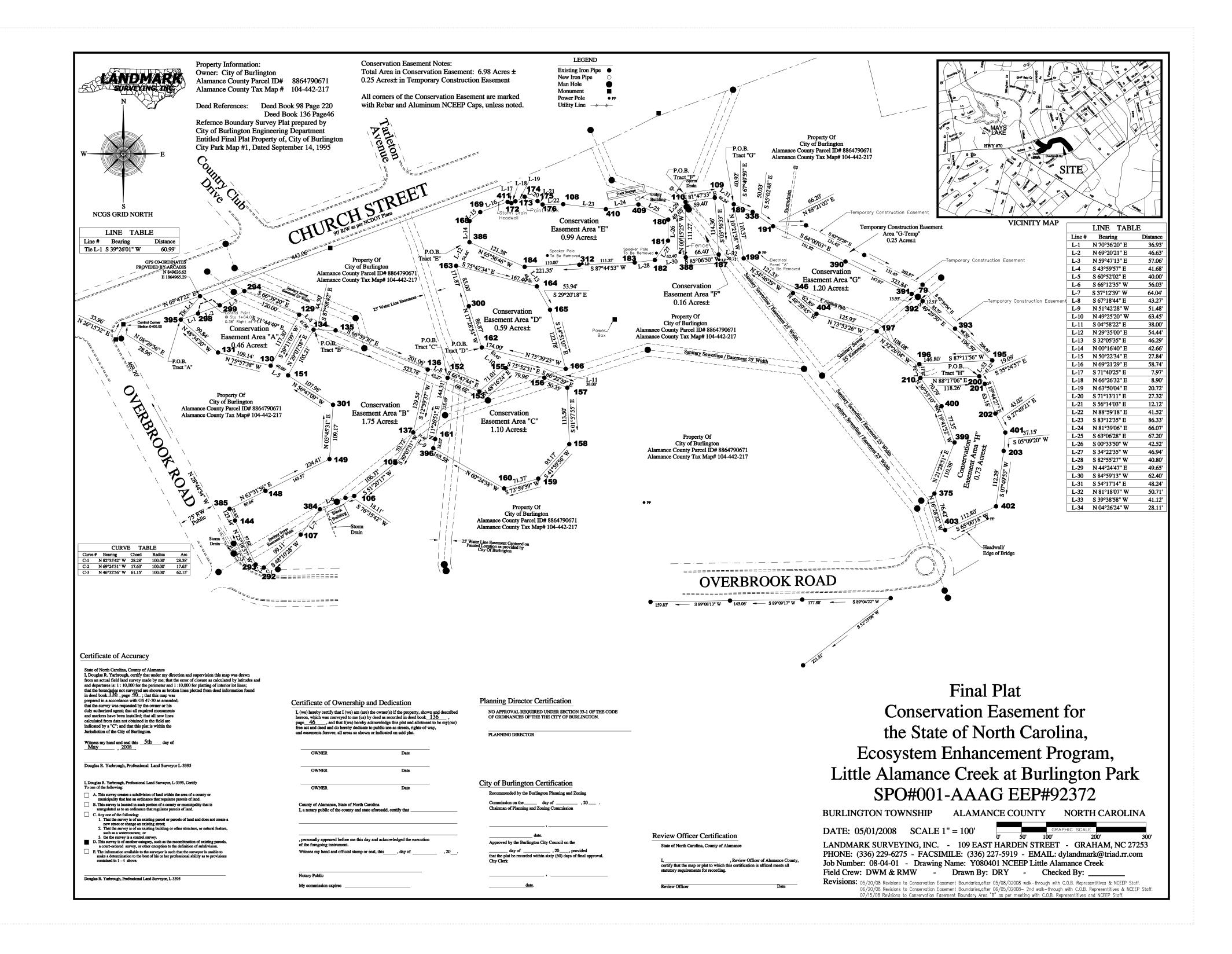
Due to contracting delays, no baseline data was collected for this project. Although there are no baseline cross sections to compare with MY1 (2013) measurements, the 2013 cross sections will serve as an adequate baseline for the remaining monitoring period. Similarly, no baseline vegetation data was collected until March 2013, approximately 13 months after planting occurred in February 2012.

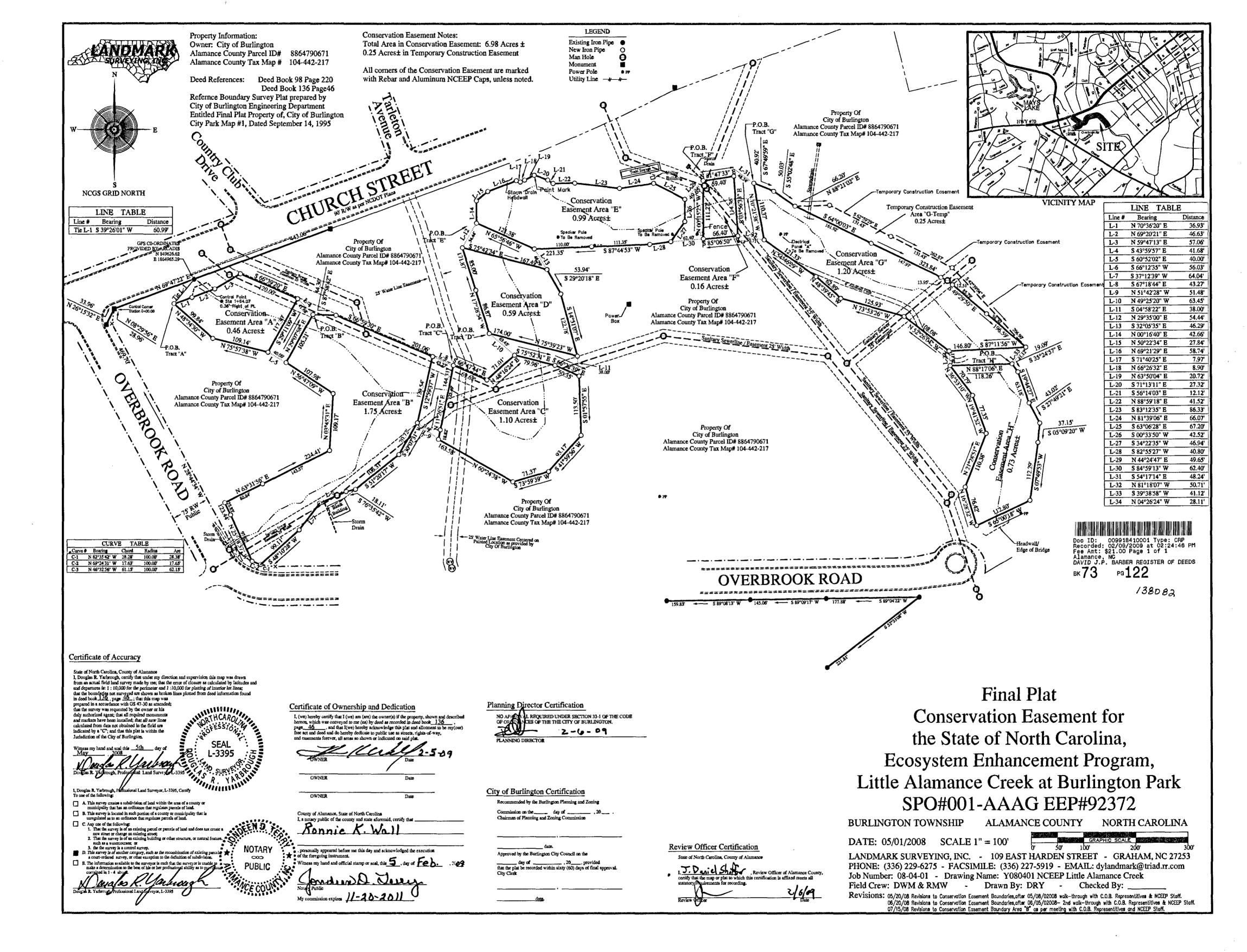
Bolded items are examples of those items that are not standard, but may come up and should be included

Non-bolded items represent events that are standard components over the course of a typical project.

The above are obviously not the extent of potential relevant project activities, but are just provided as example as part of this exhibit.

If planting and morphology are on split monitoring schedules that should be made clear in the table


	Table 3. Project Contacts Table					
Little Alamance Creek (Burlington Park) Stream Restoration/EEP Number (92372)						
Designer	ARCADIS G&M of North Carolina, Inc					
	801 Corporate Drive, Suite 300					
	Raleigh, NC 27607					
	rtaioign, rto 27007					
Primary project design POC	Robert Lepsic (919) 854-1282 ext. 195					
Construction Contractor	Shamrock Environmental Corporation					
	6106 Corporate Park Drive					
	Browns Summit, NC 27214					
Construction contractor POC	(336) 375-1989					
Survey Contractor	Turner Land Surveying, PLLC					
	3201 Glenridge Drive					
	Raleigh, NC 27604					
Survey contractor POC	Elisabeth Turner (919) 875-1378					
Planting Contractor	Carolina Wetland Services					
	550 East Westinghouse Boulevard					
	Charlotte, NC 28273					
Planting contractor POC	(704) 527-1177					
Seeding Contractor	Information Not available					
3 • • • • • • • • • • • • • • • • • • •						
Contractor point of contact	POC name and phone					
Seed Mix Sources	Information Not available					
Nursery Stock Suppliers	Native, Inc. (704) 527-1177					
Monitoring Performers	EEE Consulting, Inc.					
	601 Cascade Pointe Lane					
	Suite 101					
	Cary, NC 27513					
Stream Monitoring POC	Ray Bode, PWS (919) 650-2463 ext. 225					
Vegetation Monitoring POC	Tina Sekula, PWS (919) 650-2463 ext. 223					


	Table	e 4. Project	Attribute Table	•			
Little Alamance	Creek (Burling			tion/EEP Num	ber (92372)		
Project Name	Little Alemanee	Project Info	ormation gton Park) Strea	m Postoration			
County	Alamance Cou		gion Park) Strea	III Residiation			
Project Area (acres)		пу					
Project Area (acres) 7.06 acres Project Coordinates (latitude and longitude) 36.083566 ; -79.454233							
Project Coordinates (latitude and longitude)			Characteristics				
Physiographic Province	Piedmont			>			
River Basin	Cape Fear						
USGS Hydrologic Unit 8-digit: 03030002		nic Unit 14-dia	it: 30300020400'	10			
DWQ Sub-basin	03-06-03		11. 00000020 100				
Project Drainage Area (acres)	2690 acres						
Project Drainage Area Percentage of Impervious Area	40 percent						
CGIA Land Use Classification	Forest Land						
		ach Summar	y Information				
Parameters	Reach I	Trib	Reach III	Reach IV	Reach V	Reach VI	Reach VII
Length of Reach (linear feet)	445 lf	432.5 lf	327.5 lf	632.5 lf	57.5 lf	528 lf	315 lf
Valley Classification	Type VIII	Type VIII	Type VIII	Type VIII	Type VIII	Type VIII	Type VIII
Drainage area (acres)	2600 ac	124 ac	2630 ac	2650 ac	2655 ac	2680 ac	2690 ac
NCDWQ Stream Identification Score	47.5	33	47.5	47.5	47.5	47.5	47.5
NCDWQ Water Quality Classification	WS-V;NSW	WS-V;NSW	WS-V;NSW	WS-V;NSW	WS-V;NSW	WS-V;NSW	WS-V;NSW
Morphological Description (stream type)	C/E5/1	E4/1	C/E5/1	C/E5/1	C/E5/1	C/E5/1	C/E5/1
Evolutionary Trend	C4/1	C4/1	C4/1	C4/1	C4/1	C4/1	C4/1
Underlying Mapped Soils			Ceci	fine sandy loam	(CbC2)	•	
Drainage Class				Well drained			
Soil Hydric Class				Non-Hydric			
Slope			6	to 10 percent sl	opes		
FEMA Classification	AE Floodzone	No Study	AE Floodzone			AE Floodzone	AE Floodzone
Native Vegetation Community				Mixed Mesic For	rest		
Percent composition of exotic invasive vegetation				5 percent			
	R	egulatory Co	nsiderations	•			
Regulation	Applicable?	Resolved?		Supp	orting Documen	tation	
Waters of the United States - Section 404	Yes	Yes	N	lationwide Permi	it 27 (Action ID S	AW-2008-01198)
Waters of the United States - Section 401	Yes	Yes			```	AW-2008-01198	,
Endangered Species Act	No	N/A			N/A		•
Historic Preservation Act	No	N/A			N/A		
Coastal Zone Management Act (CZMA)/ Coastal Area							
Management Act (CAMA)	No	N/A			N/A		
FEMA Floodplain Compliance	Yes	Yes	FEMA	Floodplain Cons	istency Checklist	t (Categorical Ex	clusion)
Essential Fisheries Habitat	No	N/A			N/A		

Appendix B: Visual Assessment Data

Figure 2: Current Condition Plan View
Figure 3: Conservation Easement Marked Posts
Figure 4: Final Conservation Easement Plat
Figure 5: Conservation Easement Coordinate List
Table 5: Visual Stream Morphology Stability Assessment
Table 6: Vegetation Condition Assessment
Photo Log 1: Established Photo Stations
Photo Log 2: Vegetation Monitoring Plot Photos

Resolution of the second secon	Street Beach 3 o KS A	Reach 5 0 </th
		XS Pins X Y XS Pins X Y 1 LT 36.083434822400 -79.456434322100 8 LT 36.083781004500 -79.452795534100
		1 LT 36.083434822400 -79.456434322100 8 LT 36.083781004500 -79.452795534100 1 RT 36.083288774000 -79.456479096900 8 RT 36.083649585800 -79.452946669000
		1 LT 36.083434822400 -79.456434322100 8 LT 36.083781004500 -79.452795534100 1 RT 36.083288774000 -79.456479096900 8 RT 36.083649585800 -79.452946669000 2 LT 36.083258552600 -79.455878029400 9 LT 36.083747714100 -79.45279523800
		1 LT 36.083434822400 -79.456434322100 8 LT 36.083781004500 -79.452795534100 1 RT 36.083288774000 -79.456479096900 8 RT 36.083649585800 -79.4522946669000 2 LT 36.083255852600 -79.455878029400 9 LT 36.083747714100 -79.452739263800 2 RT 36.083107328000 -79.455039660700 9 RT 36.083611010500 -79.452856235800 3 LT 36.083095444000 -79.455736123000 10 LT 36.083629805400 -79.452557535900
	Veg Plot SW Corner Lattude® Longitude	1 LT 36.083434822400 -79.456434322100 8 LT 36.083781004500 -79.452795534100 1 RT 36.083288774000 -79.456479096900 8 RT 36.083649585800 -79.4522946669000 2 LT 36.083255852600 -79.455878029400 9 LT 36.083747714100 -79.452739263800 2 RT 36.083107328000 -79.456039660700 9 RT 36.083611010500 -79.452856235800 3 LT 36.083095444000 -79.455736123000 10 LT 36.083629805400 -79.452557535900 3 RT 36.082978864100 -79.455903359700 10 RT 36.083502341700 -79.452590178100
1		1 LT 36.083434822400 -79.456434322100 8 LT 36.083781004500 -79.452795534100 1 RT 36.083288774000 -79.456479096900 8 RT 36.083649585800 -79.4522946669000 2 LT 36.083255852600 -79.455878029400 9 LT 36.083747714100 -79.452739263800 2 RT 36.083107328000 -79.455039660700 9 RT 36.083611010500 -79.452856235800 3 LT 36.083095444000 -79.455736123000 10 LT 36.083629805400 -79.452557535900
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Veg Plot SW Corner Lattade® Longitude 1 36.082439988 -79.456324099 2 36.083243440 -79.456564421 3 36.083136923 -79.455737460	1LT 36.083434822400 -79.456434322100 8 LT 36.083781004500 -79.452795534100 1RT 36.083288774000 -79.456479096900 8 RT 36.083649585800 -79.4522946669000 2LT 36.083255852600 -79.455878029400 9 LT 36.083747714100 -79.452739263800 2 RT 36.083107328000 -79.456039660700 9 RT 36.083611010500 -79.452856235800 3 LT 36.083095444000 -79.455736123000 10 LT 36.083629805400 -79.452557535900 3 RT 36.082978864100 -79.455903359700 10 RT 36.08302341700 -79.452590178100 4 LT 36.083255035400 -79.454862386800 11 LT 36.082240928000 -79.456485794000 5 LT 36.084066109200 -79.453325103200 12 LT 36.082403342300 -79.456427765400
	2 36.083243440 -79.456564421 3 36.083136923 -79.455737460 4 36.082799516 -79.455317425	1LT 36.083434822400 -79.456434322100 8 LT 36.083781004500 -79.452795534100 1RT 36.083288774000 -79.456479096900 8 RT 36.083649585800 -79.4522946669000 2LT 36.083255852600 -79.455878029400 9 LT 36.083747714100 -79.452739263800 2 RT 36.083107328000 -79.455039660700 9 RT 36.083611010500 -79.452856235800 3 LT 36.083095444000 -79.455736123000 10 LT 36.083629805400 -79.452557535900 3 RT 36.082978864100 -79.455903359700 10 RT 36.082302341700 -79.452590178100 4 LT 36.083255035400 -79.454862386800 11 LT 36.082240928000 -79.456485794000 5 LT 36.084066109200 -79.453325103200 12 LT 36.08230342300 -79.456427765400 5 RT 36.083930338000 -79.453290470100 12 RT 36.082303040000 -79.456373839200
	2 36.083243440 -79.456564421 3 36.083136923 -79.455737460 4 36.082799516 -79.455317425 5 36.083474857 -79.455096845	1LT 36.083434822400 -79.456434322100 8 LT 36.083781004500 -79.452795534100 1RT 36.083288774000 -79.456479096900 8 RT 36.083649585800 -79.4522946669000 2LT 36.083255852600 -79.455878029400 9 LT 36.083747714100 -79.452739263800 2 RT 36.083107328000 -79.456039660700 9 RT 36.083611010500 -79.452856235800 3 LT 36.083095444000 -79.455736123000 10 LT 36.083629805400 -79.452557535900 3 RT 36.082978864100 -79.455903359700 10 RT 36.0820784000 -79.452590178100 4 LT 36.083255035400 -79.454650758400 11 LT 36.082240928000 -79.456485794000 5 LT 36.084066109200 -79.453325103200 12 LT 36.082303040000 -79.456427765400 5 RT 36.083930338000 -79.452956931200 12 RT 36.082303040000 -79.456373839200 6 LT 36.083893647700 -79.452956931200 13 LT 36.082438153700 -79.456359426500
Overbrook Road	2 36.083243440 -79.456564421 3 36.083136923 -79.455737460 4 36.082799516 -79.455317425 5 36.083474857 -79.455096845 6 36.083809437 -79.452847391 7 36.083482988 -79.452740202	1LT 36.083434822400 -79.456434322100 8 LT 36.083781004500 -79.452795534100 1RT 36.083288774000 -79.456479096900 8 RT 36.083649585800 -79.4522946669000 2LT 36.083255852600 -79.455878029400 9 LT 36.083649585800 -79.452739263800 2 RT 36.083107328000 -79.456039660700 9 RT 36.083611010500 -79.452856235800 3 LT 36.083095444000 -79.455736123000 10 LT 36.083629805400 -79.452557535900 3 RT 36.082978864100 -79.455903359700 10 RT 36.082031010100 -79.452590178100 4 LT 36.083255035400 -79.454650758400 11 LT 36.082240928000 -79.456459794000 5 LT 36.084066109200 -79.45325103200 12 LT 36.082303040000 -79.456427765400 5 RT 36.083930338000 -79.452956931200 12 LT 36.082303040000 -79.456359426500 6 LT 36.083792325100 -79.452956931200 13 LT 36.082389676100 -79.456198681800 7 LT 36.083823409000 -79.452864854500 14 LT 36.082581815700 -79.456025302200 <
Overbrook Road Source: USDA FSA NAIP Aerial Photograph North Carolina 2012	2 36.083243440 -79.456564421 3 36.083136923 -79.455737460 4 36.082799516 -79.455317425 5 36.083474857 -79.455096845 6 36.083809437 -79.452847391	1LT 36.083434822400 -79.456434322100 8 LT 36.083781004500 -79.452795534100 1RT 36.083288774000 -79.456479096900 8 RT 36.083649585800 -79.4522946669000 2LT 36.083255852600 -79.455878029400 9 LT 36.083747714100 -79.452739263800 2 RT 36.083107328000 -79.456039660700 9 RT 36.083611010500 -79.452856235800 3 LT 36.083095444000 -79.455736123000 10 LT 36.083629805400 -79.452557535900 3 RT 36.082978864100 -79.455903359700 10 RT 36.082302341700 -79.452590178100 4 LT 36.083255035400 -79.454650758400 11 LT 36.082240928000 -79.456485794000 5 LT 36.084066109200 -79.453325103200 12 LT 36.082303040000 -79.456427765400 5 RT 36.083893647700 -79.452956931200 13 LT 36.082389676100 -79.456359426500 6 LT 36.083792325100 -79.453114194900 13 RT 36.082389676100 -79.456198681800
Overbrook Road	2 36.083243440 -79.456564421 3 36.083136923 -79.455737460 4 36.082799516 -79.455317425 5 36.083474857 -79.455096845 6 36.083809437 -79.452847391 7 36.083482988 -79.452740202	1LT 36.083434822400 -79.456434322100 8 LT 36.083781004500 -79.452795534100 1RT 36.083288774000 -79.456479096900 8 RT 36.083649585800 -79.4522946669000 2LT 36.083255852600 -79.455878029400 9 LT 36.083747714100 -79.452739263800 2 RT 36.083107328000 -79.455039660700 9 RT 36.083611010500 -79.452856235800 3 LT 36.083095444000 -79.455736123000 10 LT 36.083629805400 -79.452557535900 3 RT 36.082978864100 -79.455903359700 10 RT 36.082302341700 -79.4559037800 4 LT 36.083255035400 -79.454650758400 11 RT 36.082240928000 -79.456459794000 5 LT 36.084066109200 -79.45325103200 12 LT 36.082403342300 -79.4564575400 5 RT 36.083930338000 -79.452956931200 13 LT 36.082389676100 -79.456359426500 6 LT 36.083792325100 -79.452864854500 14 LT 36.08249083700 -79.455969614400 7 LT 36.083721650900 -79.453013892000 14 RT 36.082490083700 -79.455969614400
Overbrook Road Source: USDA FSA NAIP Aerial Photograph North Carolina 2012	2 36.083243440 -79.456564421 3 36.083136923 -79.455737460 4 36.082799516 -79.455317425 5 36.083474857 -79.455096845 6 36.083809437 -79.452847391 7 36.083482988 -79.452740202	1LT 36.083434822400 -79.456434322100 8 LT 36.083781004500 -79.452795534100 1RT 36.083288774000 -79.456479096900 8 RT 36.083649585800 -79.4522946669000 2LT 36.083255852600 -79.455878029400 9 LT 36.083747714100 -79.452739263800 2 RT 36.083107328000 -79.45503660700 9 RT 36.083611010500 -79.452856235800 3 LT 36.083095444000 -79.455736123000 10 LT 36.083629805400 -79.452557535900 3 RT 36.082978864100 -79.455903359700 10 RT 36.082240928000 -79.456590293700 4 LT 36.083255035400 -79.454650758400 11 RT 36.082240928000 -79.456457765400 5 LT 36.084066109200 -79.453250103200 12 LT 36.082303040000 -79.456373839200 6 LT 36.083930338000 -79.452956931200 13 LT 36.082389676100 -79.456025302200 6 RT 36.083721650900 -79.453013892000 14 LT 36.08249083700 -79.455969614400 7 LT 36.083721650900 -79.453013892000 14 RT 36.082490083700 -79.455969614400 </th
Overbrook Road Source: USDA FSA NAIP Aerial Photograph North Carolina 2012 Legend Crest Gauges Conservation Easement	2 36.083243440 -79.456564421 3 36.083136923 -79.455737460 4 36.082799516 -79.455317425 5 36.083474857 -79.455096845 6 36.083809437 -79.452847391 7 36.083482988 -79.452740202 8 36.082870312 -79.451806985	1LT 36.083434822400 -79.456434322100 8 LT 36.083781004500 -79.452795534100 1RT 36.083288774000 -79.456479096900 8 RT 36.083649585800 -79.4522946669000 2LT 36.083255852600 -79.455878029400 9 LT 36.083747714100 -79.452739263800 2 RT 36.083107328000 -79.456039660700 9 RT 36.083611010500 -79.452856235800 3 LT 36.083095444000 -79.455736123000 10 LT 36.0832039800 -79.452557535900 3 RT 36.082978864100 -79.455903359700 10 RT 36.082240928000 -79.456590293700 4 LT 36.083255035400 -79.454650758400 11 RT 36.082240928000 -79.456457765400 5 LT 36.084066109200 -79.45325013200 12 LT 36.082303040000 -79.456457765400 5 RT 36.083930338000 -79.452956931200 13 LT 36.082389676100 -79.456359426500 6 LT 36.083792325100 -79.45286485450 14 LT 36.08249083700 -79.456025302200 7 LT 36.083721650900 -79.453013892000 14 RT 36.082490083700 -79.455969614400
Overbrook Road Source: USDA FSA NAIP Aerial Photograph North Carolina 2012 Legend Crest Gauges Photostations Photostations	2 36.083243440 -79.456564421 3 36.083136923 -79.455737460 4 36.082799516 -79.455317425 5 36.083474857 -79.455096845 6 36.083809437 -79.452847391 7 36.083482988 -79.452740202 8 36.082870312 -79.451806985	1LT 36.083434822400 -79.456434322100 8 LT 36.083781004500 -79.452795534100 1RT 36.083288774000 -79.456479096900 8 RT 36.083649585800 -79.4522946669000 2LT 36.083255852600 -79.455878029400 9 LT 36.083747714100 -79.452739263800 2 RT 36.083107328000 -79.455039660700 9 RT 36.083611010500 -79.452856235800 3 LT 36.083095444000 -79.455736123000 10 LT 36.08320985400 -79.452557535900 3 RT 36.082978864100 -79.455903359700 10 RT 36.082240928000 -79.456590293700 4 LT 36.083245857200 -79.454650758400 11 RT 36.082240928000 -79.456457765400 5 LT 36.084066109200 -79.45325103200 12 LT 36.082303040000 -79.456457765400 5 RT 36.083930338000 -79.452956931200 13 LT 36.082389676100 -79.456359426500 6 LT 36.083721650900 -79.45286485450 14 LT 36.0822490083700 -79.456025302200 7 LT 36.083721650900 -79.453013892000 14 RT 36.082490083700 -79.455696914400 </th
Overbrook Road Source: USDA FSA NAIP Aerial Photograph North Carolina 2012 Legend Crest Gauges Photostations Photostations Designed Centerline MY1 Thalweg	2 36.083243440 -79.456564421 3 36.083136923 -79.455737460 4 36.082799516 -79.455737460 4 36.082799516 -79.455317425 5 36.083474857 -79.455096845 6 36.083809437 -79.452847391 7 36.083482988 -79.452740202 8 36.082870312 -79.451806985	1LT 36.083434822400 -79.456434322100 8 LT 36.083781004500 -79.452795534100 1RT 36.083288774000 -79.456479096900 8 RT 36.083649585800 -79.452946669000 2 LT 36.083255852600 -79.455878029400 9 LT 36.083747714100 -79.452739263800 2 RT 36.083107328000 -79.455039660700 9 RT 36.083611010500 -79.452557535900 3 LT 36.083095444000 -79.455736123000 10 LT 36.08320850400 -79.452557535900 3 RT 36.082978864100 -79.4559335970 10 RT 36.083202341700 -79.4552590178100 4 LT 36.083245857200 -79.454650758400 11 RT 36.082240928000 -79.456485794000 5 LT 36.083930338000 -79.45235031010 12 LT 36.08230340000 -79.456427765400 5 RT 36.083930338000 -79.452396931200 13 LT 36.08230340000 -79.45569320200 6 LT 36.083792325100 -79.4553013892000 14 RT 36.082389676100 -79.455098681800 7 LT 36.083721650900 -79.453013892000 14 RT 36.082490083700 -79.4559596912400
Overbrook Road Source: USDA FSA NAIP Aerial Photograph North Carolina 2012 Legend Crest Gauges Conservation Easement Photostations Contours (4ft) Designed Centerline Invasive Species	2 36.083243440 -79.456564421 3 36.083136923 -79.455737460 4 36.082799516 -79.455737460 4 36.082799516 -79.455317425 5 36.083474857 -79.455096845 6 36.083809437 -79.452847391 7 36.082870312 -79.452740202 8 36.082870312 -79.451806985	1 LT 36.083434822400 -79.456434322100 8 LT 36.083781004500 -79.452795534100 1 RT 36.083288774000 -79.456479096900 8 RT 36.083649585800 -79.4522946669000 2 LT 36.083255852600 -79.455878029400 9 LT 36.083747714100 -79.452739263800 2 RT 36.083107328000 -79.455039660700 9 RT 36.083611010500 -79.452557535900 3 LT 36.083095444000 -79.455736123000 10 LT 36.0832039800 -79.452557535900 3 RT 36.082978864100 -79.454650758400 11 LT 36.082240928000 -79.456457765400 4 LT 36.083245857200 -79.454650758400 11 RT 36.08220928000 -79.456457765400 5 LT 36.084066109200 -79.45325103200 12 LT 36.08230304000 -79.456457765400 5 RT 36.083930338000 -79.452956931200 13 LT 36.082389676100 -79.45635782500 6 LT 36.08372325100 -79.45314194900 13 RT 36.0822389676100 -79.456025302200 7 LT 36.083721650900 -79.453031892000 14 RT 36.0822490083700 -79.455696914400

AREA "A"

NORTH	EAST	Point #
849579.51554	1864926.55171	395
849591.77729	1864961.38155	298
849608.22978	1865005.01204	299
849636.94197	1865054.31867	294
849589.39149	1865164.49481	129
849486.98274	1865107.29342	130
849513.45974	1865001.41137	131
849579.51554	1864926.55171	395
01001010101	1001020100111	000
AREA "B"		
NORTH	EAST	Point #
849559.40556	1865193.45108	134
849557.84265	1865237.72626	35
849479.25598	1865422.79011	33 136
849353.03468	1865393.66448	130
849291.86683	1865358.17065	
849225.45240	1865275.15897	105
		106
849221.25010	1865257.53874	140
849198.64891	1865206.27156	384
849147.64645	1865167.54338	107
849081.54893	1865093.68513	292
849087.74837	1865077.18420	293
849176.03999	1865035.54448	144
849199.39922	1865024.52791	385
849235.42971	1865096.89567	148
849299.41895	1865225.41897	149
849408.35898	1865232.57548	301
849467.50926	1865142.23314	151
849559.40556	1865193.45108	134
AREA "C"		
NORTH	EAST	Point #
849462.56616	1865462.71229	152
849435.13638	1865526.69686	153
849482.39703	1865579.69130	155
849462.88378	1865657.23514	156
849442.70621	1865703.37024	157
849329.27516	1865707.26253	158
849260.03559	1865644.92151	159
849240.35724	1865576.32112	160
849321.13162	1865434.07191	396
849339.57571	1865437.80714	161
849462.56616	1865462.71229	152
AREA "D"		
NORTH	EAST	Point #
849523.67028	1865531.49915	162
849606.54503	1865505.41990	300
849687.60418	1865479.86867	163
849646.26097	1865642.17633	164
849599.23801	1865668.60583	165
849480.56349	1865700.07636	166
849523.67028	1865531.49915	162

AREA "E"

NORTH	EAST	Point #
849734.94933	1865506.74625	386
849777.61339	1865506.95303	168
849795.36536	1865528.39325	169
849816.07420	1865583.36623	411
849813.56859	1865590.93079	172
849817.12503	1865599.08756	172
849826.26238	1865617.68539	173
849817.46632	1865643.55279	175
849810.73250	1865653.62464	176
849811.46562	1865695.14176	108
849801.25856	1865780.86612	410
849810.85135	1865846.23666	409
849780.45763	1865906.16581	180
849737.93964	1865905.74732	181
849699.19996	1865879.24506	182
849694.17460	1865838.75955	183
849689.79904	1865727.49867	312
849685.47681	1865617.58282	184
849734.94933	1865506.74625	386
649754.94955	1805500.74025	300
AREA "F"		
NORTH	EAST	Point #
849815.92160	1865940.90924	110
849824.39775	1865999.70351	109
849710.30838	1866007.56636	187
849704.65272	1865941.40823	388
849815.92160	1865940.90924	110
040010.02100	1000040.00024	110
AREA "G"		
NORTH	EAST	Point #
849811.20595	1866037.84131	189
849795.76690	1866075.73608	338
849767.10290	1866116.74370	191
849696.12266	1866262.27953	390
849631.25699	1866395.27823	391
849625.14242	1866407.81537	79 MH
849617.01962	1866417.32501	392
849561.30036	1866482.55746	393
849497.45831	1866557.29954	195
849490.28422	1866410.67696	195
849490.28422 849556.17669		196
	1866325.00704	
849591.11839	1866204.02424	404
849632.65737	1866156.80372	346
849702.64017	1866057.68956	199
849811.20595	1866037.84131	189

AREA "H"

EAST	Point #
1866531.05945	200
1866542.12494	201
1866563.46603	202
1866583.54506	401
1866580.20684	203
1866564.90566	402
1866462.67261	403
1866442.93365	375
1866481.41733	399
1866455.34439	400
1866412.85336	210
1866531.05945	200
	$1866531.05945 \\ 1866542.12494 \\ 1866563.46603 \\ 1866583.54506 \\ 1866580.20684 \\ 1866564.90566 \\ 1866462.67261 \\ 1866442.93365 \\ 1866442.93365 \\ 1866481.41733 \\ 1866455.34439 \\ 1866412.85336 \\ 1866412.8536 \\ 1866412.8536 \\ 1866412.85336 \\ 1866412.85336 \\ 1866412.85336 \\ 1866412.85336 \\ 1866412.85336 \\ 1866412.85336 \\ 1866412.85336 \\ 1866412.85336 \\ 1866412.85336 \\ 1866412.85336 \\ 1866412.85336 \\ 1866412.85336 \\ 1866412.85336 \\ 1866412.85336 \\ 1866412.85326 \\ 1866412.85336 \\ 1866412.85326 \\ 1866412.85326 \\ 1866412.85336 \\ 1866412.85326 \\ 1866412.8526 \\ 1866412.8526 \\ 1866412.8526 \\ 1866412.8526 \\ 1866412.8526 \\ 1866412.8526 \\ 1866412.8526 \\ 1866412.8526 \\ 1866412.8526 \\ 1866412.8526 \\ 1866412.8526 \\ 1866412.8526 \\ 1866412.8526 \\ 1866412.8526 \\ 1866412.8526 \\ 1866412.8526 $

Visual Stream Morphology Stability Assessment

Reach ID Assessed Length

Mainstem 2275 If

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	6	6			100%			
	3. Meander Pool Condition	 <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6) 	4	4			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstream riffle) 	4	4			100%			
	4. Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	4	4			100%	1		
		2. Thalweg centering at downstream of meander (Glide)	4	4			100%			
		•					•			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			3	180	96%	1	100	98%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
	-			Totals	3	180	100%	1	100	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	6	6			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	0	0			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	6	6			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	0	0			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	4	4			100%			

Table 5 Reach II Table 5 Reach ID

Visual Stream Morphology Stability Assessment

Reach IDUnnamed TributaryAssessed Length450 If

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	2	2			100%			
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	2	2			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstream riffle) 	2	2			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	2	2			100%			
		2. Thalweg centering at downstream of meander (Glide)	2	2			100%			
	-	-						-		
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			1	75	99%	0	0	99%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	1	75	99%	0	0	99%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	2	2			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	1	1			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	2	2			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	1	1			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	2	2			100%			

Vegetation Condition Assessment

Planted Acreage 7.06 ac % of CCPV Mapping Number of Combined Planted Vegetation Category Definitions Threshold Depiction Polvaons Acreage Acreage 0 0.00 1. Bare Areas Very limited cover of both woody and herbaceous material. 0.1 acres N/A 0.0% Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count Red veg plot 6 0.06 0.8% 2. Low Stem Density Areas 0.01 acres criteria. polygons Total 6 0.06 0.8% 3. Areas of Poor Growth Rates or Areas with woody stems of a size class that are obviously small given the monitoring 0.25 acres 0 N/A 0.00 0.0% Vigor vear. **Cumulative Total** 6 0.06 0.8%

7.06 ac Easement Acreage % of CCPV Number of Combined Mapping Easement Vegetation Category Definitions Threshold Depiction Polygons Acreage Acreage 4. Invasive Areas of Concern⁴ Areas or points (if too small to render as polygons at map scale). 1000 SF Yellow Point 7 points 0.50 7.1% Areas or points (if too small to render as polygons at map scale). N/A 0 0.00 Easement Encroachment Areas³ none 0.0%

1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.

2 = The acreage within the easement boundaries.

Table 6

3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.

4 = Invasives may occur in or out of planted areas, but still within the assement at a main of the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spices are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timetrames that are slightly longer (e.g., r-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timetrames discussed and therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern stores are those species that generally do not have this capacity over the timetrames discussed and there established tree/shrub stands over timetrames that are slightly longer (e.g., r-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timetrames discussed and the precise set of the concern group are those species that generally do not have the longer (e.g., r-2 decades). The low/moderate concern group are those species that generally do not have the integration of risk factors by EEP such as species present, their coverage, distribution relative to native binated woody stems. For example, even modes of Kudzu or Japanese Knottweet early in the potential impacts of treatment control, but potentially large coverages of Microstegium in the herb layer will not likely trigger control because of the integration of risk as all and end of the deserver modes are of group of corse group are their existence in their existence in their existence in the existence in the event mode as a parameter with the second and the end and the end

Photo Log 1: Established Photo Stations

Photo Station 1, rail line at bollard 172, facing east; April 3, 2013

Photo Station 2, level spreader at bollard 410, facing east; April 3, 2013

Photo Station 3, rail line discharge, facing south; April 3, 2013

Photo Station 1, rail line at bollard 172, facing east; October 15, 2013

Photo Station 2, level spreader at bollard 410, facing east; October 15, 2013

Photo Station 3, rail line discharge, facing south; October 15, 2013

Little Alamance (Burlington Park) Stream Restoration; NCEEP Project No. 92372; NCEEP Contract No. 4998; Monitoring Year 2 of 5; Submitted: January 2014

Photo Station 4, discharge at bollard 312, facing west; April 3, 2013

Photo Station 5, view of easement facing northwest; April 3, 2013

Photo Station 6, VP 7 at bollard 401, facing west; April 3, 2013

Photo Station 4, discharge at bollard 312, facing west; October 15, 2013

Photo Station 5, view of easement facing northwest; October 15, 2013

Photo Station 6, VP 7 at bollard 401, facing west; October 15, 2013

Little Alamance (Burlington Park) Stream Restoration; NCEEP Project No. 92372; NCEEP Contract No. 4998; Monitoring Year 2 of 5; Submitted: January 2014

FINAL Appendix B

Photo Station 7, XS 1, facing right bank; March 27, 2013

Photo Station 8, XS 2, facing right bank; March 27, 2013

Photo Station 9, XS 3, facing right bank; March 27, 2013

Photo Station 7, XS 1, facing right bank; October 15, 2013

Photo Station 8, XS 2, facing right bank; October 15, 2013

Photo Station 9, XS 3, facing right bank; October 15, 2013

Little Alamance (Burlington Park) Stream Restoration; NCEEP Project No. 92372; NCEEP Contract No. 4998; Monitoring Year 2 of 5; Submitted: January 2014 FINAL

Appendix B

Photo Station 10, XS 4, facing right bank; April 3, 2013

Photo Station 11, XS 5, facing right bank; March 27, 2013

Photo Station 12, XS 6, facing right bank; April 3, 2013

Photo Station 10, XS 4, facing right bank; October 15, 2013

Photo Station 11, XS 5, facing right bank; October 15, 2013

Photo Station 12, XS 6, facing right bank; October 15, 2013

Little Alamance (Burlington Park) Stream Restoration; NCEEP Project No. 92372; NCEEP Contract No. 4998; Monitoring Year 2 of 5; Submitted: January 2014

```
FINAL
Appendix B
```


Photo Station 13, XS 7, facing right bank; April 3, 2013

Photo Station 14, XS 8, facing right bank; April 3, 2013

Photo Station 15, XS 9, facing right bank; April 3, 2013

Photo Station 13, XS 7, facing right bank; October 15, 2013

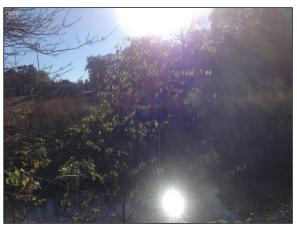


Photo Station 14, XS 8, facing right bank; October 15, 2013

Photo Station 15, XS 9, facing right bank; October 15, 2013

Little Alamance (Burlington Park) Stream Restoration; NCEEP Project No. 92372; NCEEP Contract No. 4998; Monitoring Year 2 of 5; Submitted: January 2014 FINAL

Appendix B

Photo Station 16, XS 10, facing right bank; April 3, 2013

Photo Station 17, XS 11, facing right bank; April 3, 2013

Photo Station 18, XS 12, facing right bank; April 3, 2013

Photo Station 16, XS 10, facing right bank; October 15, 2013

Photo Station 17, XS 11, facing right bank; October 15, 2013

Photo Station 18, XS 12, facing right bank; October 15, 2013

Little Alamance (Burlington Park) Stream Restoration; NCEEP Project No. 92372; NCEEP Contract No. 4998; Monitoring Year 2 of 5; Submitted: January 2014 FINAL

Appendix B

Photo Station 19, XS 13, facing right bank; April 3, 2013

Photo Station 20, XS 14, facing right bank; April 3, 2013

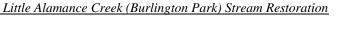


Photo Station 19, XS 13, facing right bank; October 15, 2013

Photo Station 20, XS 14, facing right bank; October 15, 2013

Veg Plot 1, view from southwest corner; March 27, 2013

Veg Plot 2, view from southwest corner; March 27, 2013

Veg Plot 3, view from southwest corner; March 27, 2013

Veg Plot 1, view from southwest corner; October 15, 2013

Veg Plot 2, view from southwest corner; October 15, 2013

Veg Plot 3, view from southwest corner; October 15, 2013

Little Alamance (Burlington Park) Stream Restoration; NCEEP Project No. 92372; NCEEP Contract No. 4998; Monitoring Year 2 of 5; Submitted: January 2014 FINAL

Photo Log 2: Vegetation Monitoring Plot Photos

Veg Plot 4, view from southwest corner; March 27, 2013

Veg Plot 5, view from southwest corner; March 27, 2013

Veg Plot 6, view from southwest corner; April 3, 2013

Veg Plot 4, view from southwest corner; October 15, 2013

Veg Plot 5, view from southwest corner; October 15, 2013

Veg Plot 6, view from southwest corner; October 15, 2013

Little Alamance (Burlington Park) Stream Restoration; NCEEP Project No. 92372; NCEEP Contract No. 4998; Monitoring Year 2 of 5; Submitted: January 2014 FINAL

Appendix B

Veg Plot 7, view from southwest corner; April 3, 2013

Veg Plot 8, view from southwest corner; April 3, 2013

Veg Plot 7, view from southwest corner; October 15, 2013

Veg Plot 8, view from southwest corner; October 15, 2013

Appendix C: Vegetation Plot Data

Table 7: Vegetation Plot Success by Project Asset Type Table 8: CVS Stem Count Total and Planted with/without Livestakes by Plot and Species

Table 7: Little Alamance (#92372)

Year 2 (15-Oct-2013)

Vegetation Plot Summary Information

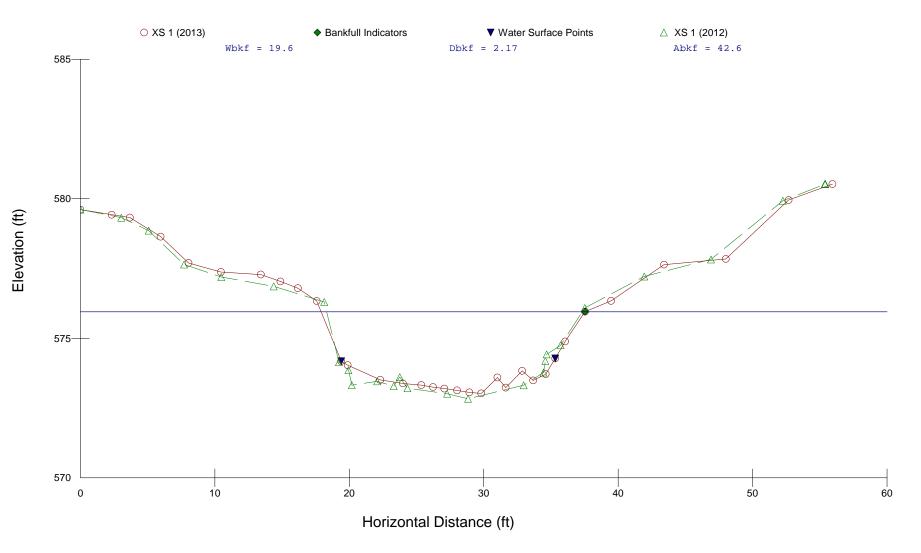
Plot #	Riparian Buffer Stems ¹	Stream/ Wetland Stems ²	Live Stakes	Invasives	Volunteers ³	Total⁴	Unknown Growth Form
1	n/a	8	0	1	6	13	0
2	n/a	5	0	0	12	17	0
3	n/a	5	0	1	50	54	0
4	n/a	7	0	0	6	13	0
5	n/a	2	0	0	5	7	0
6	n/a	11	0	0	8	19	0
7	n/a	2	1	0	3	6	0
8	n/a	3	0	0	0	3	0

Wetland/Stream Vegetation Totals

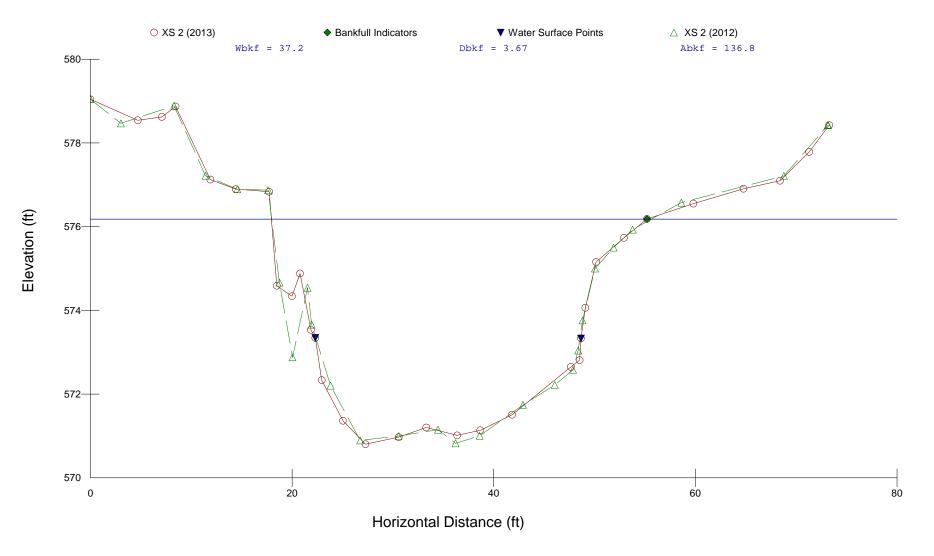
	(per acre)				
	Stream/			Success	
	Wetland			Criteria	
Plot #	Stems ²	Volunteers ³	Total ⁴	Met?	
1	324	243	526	Yes, barely	
2	202	486	688	No	
3	202	2023	2185	No	
4	283	243	526	No	
5	81	202	283	No	
6	445	324	769	Yes	
7	81	121	243	No	
8	121	0	121	No	
Project Avg	218	455	668	No	

Riparian Buffer Vegetation Totals

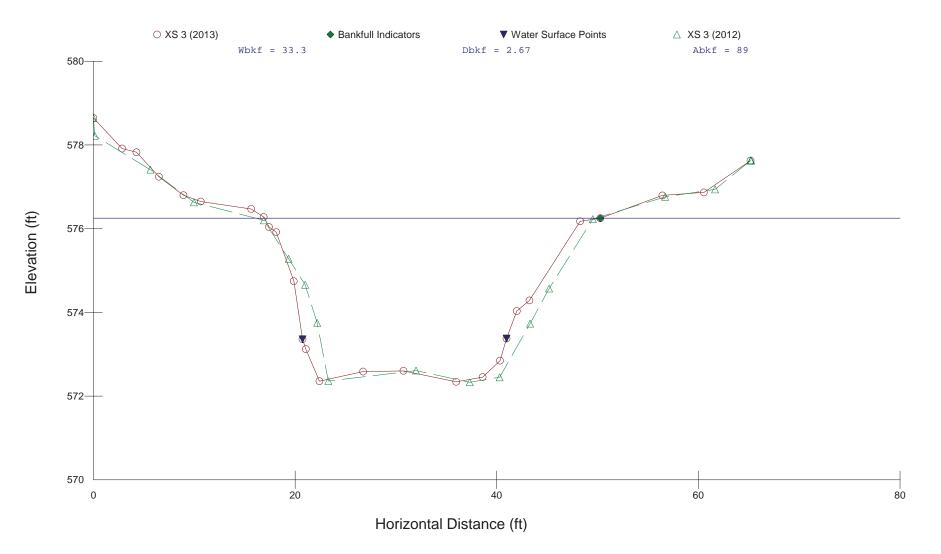
-	(per acre)		
	Riparian	Success	
	Buffer	Criteria	
Plot #	Stems ¹	Met?	
1	n/a		
2	n/a		
3	n/a		
4	n/a		
5	n/a		
6	n/a		
7	n/a		
8	n/a		
Project Avg	n/a		

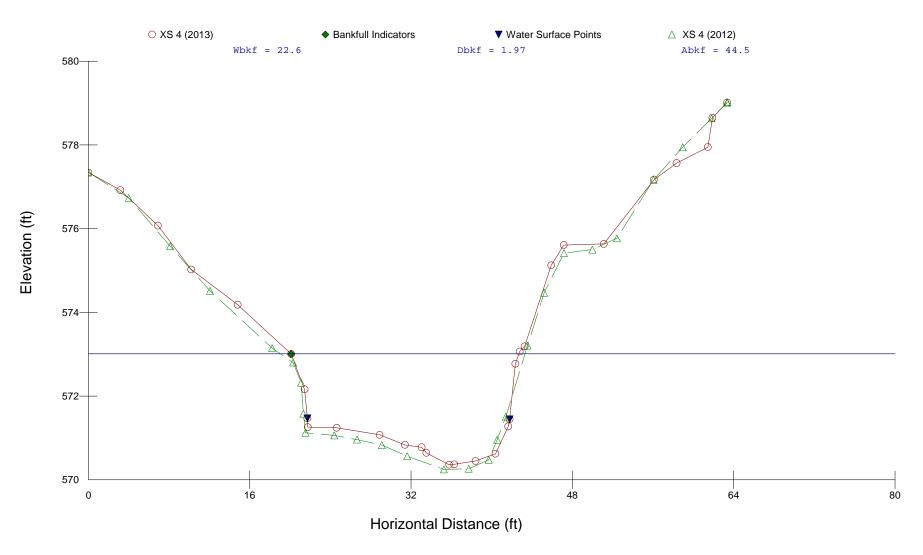

Stem Class characteristics ¹Buffer Native planted hardwood trees. Does NOT include shrubs. No pines. No vines. ²Stream/ Native planted woody stems. Includes shrubs, does NOT include live stakes. No vines ³Volunteers Native woody stems. Not planted. No vines.

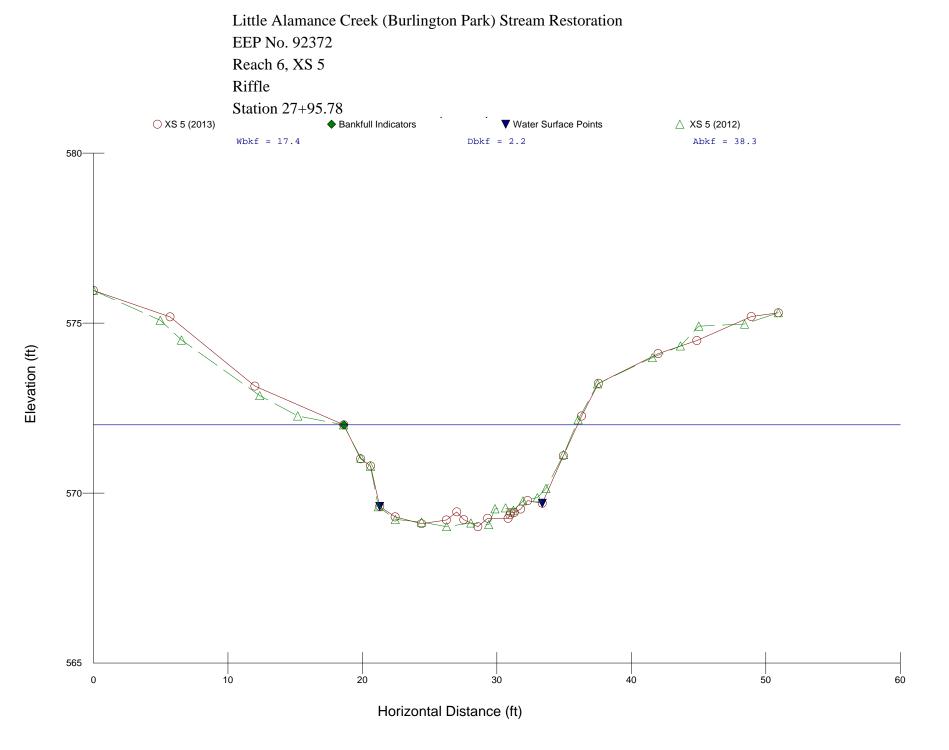
⁴Total Planted + volunteer native woody stems. Includes live stakes. Excl. exotics. Excl. vines.


													Current	t Plot D	ata (M'	/2 2013)												Annual	Mean	;
			923	872-01-0	0001	923	72-01-0	0002	923	72-01-0	0003		72-01-0	0004	923	72-01-0	0005	923	72-01-0	006	923	72-01-	0007		72-01-	0008		IY2 (201	13)	N	1Y1 (2013
Scientific Name	Common Name	Species Type	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	Т	PnoLS	P-all	т	PnoLS	P-all	Т	PnoLS	P-all T
Acer negundo	boxelder	Tree																													
Acer rubrum	red maple	Tree																													
Asimina triloba	pawpaw	Tree										3	3	3				2	2	2							5	5	5		
Baccharis halimifolia	eastern baccharis	Shrub																													
Betula nigra	river birch	Tree				2	2	2	2	2	2							2	2	2	1	2	3	1	1	. 1	8	9	10	7	7
Carpinus caroliniana	American hornbeam	Tree										1	1	1				2	2	2							3	3	3	8	8
Carya alba	mockernut hickory	Tree																		1									1		
Carya cordiformis	bitternut hickory	Tree																												2	2
Carya glabra	pignut hickory	Tree															1												1		
Carya illinoinensis	pecan	Tree												1			1												2		
Carya ovata	shagbark hickory	Tree										1	1	1													1	1	1	2	2
Castanea mollissima	Chinese chestnut	Exotic			1																								1		
Celtis laevigata	sugarberry	Tree										1	1	1													1	1	1	13	13
Cercis canadensis	eastern redbud	Tree																													
Cornus amomum	silky dogwood	Shrub	1	1	1	1	1	1				1	1	1										2	2	2	5	5	5	6	6
Cornus florida	flowering dogwood	Tree	2	2	3	1	1	1																			3	3	4	3	3
Diospyros virginiana	common persimmon	Tree			3			5			2						3												13		
DONTKNOW: unsure record	d																													1	1
Euonymus americanus																															
Fraxinus americana	white ash	Tree																													1
Fraxinus pennsylvanica	green ash	Tree																												2	2
Hamamelis virginiana	American witchhazel	Tree																		1									1		
llex opaca	American holly	Tree	2	2	2																						2	2	2	2	2
Ligustrum	privet	Exotic																													1
Ligustrum lucidum	glossy privet	Exotic																													
Ligustrum sinense	Chinese privet	Exotic																													
Liquidambar styraciflua	sweetgum	Tree												2															2		1
Morus alba	white mulberry	Exotic									1																		1		
Morus rubra	red mulberry	Tree																													
Photinia	chokeberry																														
Platanus occidentalis	American sycamore	Tree							2	2	2				2	2	2						1				4	4	5	3	3
Prunus serotina	black cherry	Tree																		1									1		
Quercus	oak	Tree						1																					1		
Quercus coccinea	scarlet oak	Tree																													
Quercus nigra	water oak	Tree			1			2			1									3									7		
Quercus pagoda	cherrybark oak	Tree	1	1	1																		1				1	1	1	9	9
Quercus palustris	pin oak	Tree		1 Î							46									2			1				-		49		
Quercus velutina	black oak	Tree																		-										1	
Salix nigra	black willow	Tree																					1						<u> </u>	1	1
Sambucus canadensis	Common Elderberry	Shrub	1	1	1				1	1	1		<u> </u>			İ		1	1	1	1	1	1				4	4	4	5	5
Ulmus rubra	slippery elm	Tree						4					<u> </u>	3		İ		-	-										7		
Viburnum dentatum	southern arrowwood	Shrub				1	1	1										1	1	1							2	2	2	2	3
Viburnum nudum	possumhaw	Shrub	1	1	1														-	1			1			1	1	1	1		ΗŤ
Viburnum prunifolium	blackhaw	shrub	-															3	3	3							3		3	3	3
		Stem count	8	8	14	5	5	17	E	5	55	7	7	13	'n	2	7	11	11	19	2	3	6	2	3	2	43	-	134	69	-
			•	1	14	5	1	1/	2	1	35		1	13	- 4	1	/	11	1	19	2	1	0	3	1	3	43	8	154	09	8
		size (ares) size (ACRES)		0.02			0.02			0.02		-	0.02			0.02			0.02			0.02			0.02			8		┣──	0.20
			-	0.02	_		0.02		-	0.02	-	-	0.02			0.02					-	0.02		-	0.02					<u> </u>	
		Species count Stems per ACRE	6 323.7	v	9 566.6	4 202.3	4 202.3	8 688	202.3	3 202.3	2226	283.3	5 283.3	8 526.1	80 94	1 80.94	4 283.3	6 445.2	6 445.2	11 768.9	2 80.94	2 121.4	4	121.4	2 121.4	2	14 217.5	14 222.6	27 677.8	15 349	

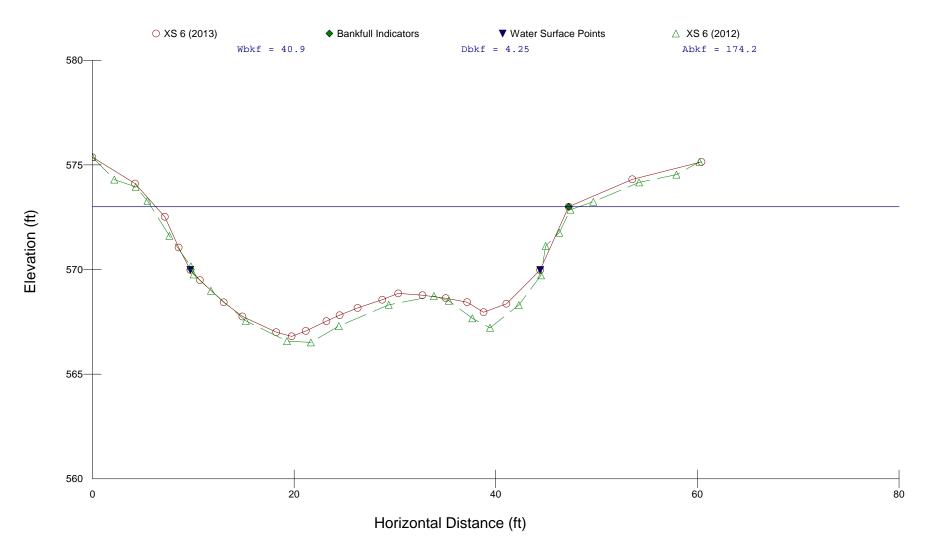
Appendix D: Stream Survey Data

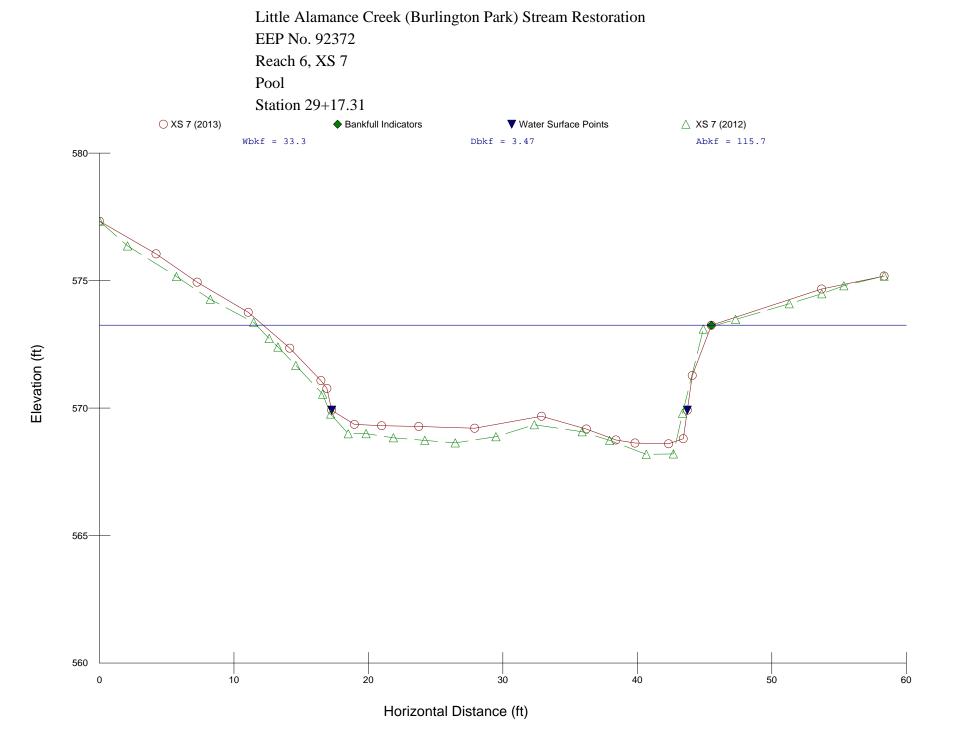

Figure 6: Cross Sections with Annual Overlays
Figure 7: Longitudinal Profiles with Annual Overlays
Figure 8: Pebble Counts with Annual Overlays
Table 9: Stream Bank Erosion Pin Data Table
Table 10a: Baseline Stream Data Summary
Table 10b: Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions)
Table 11a: Monitoring – Cross Section Morphology Data Table
Table 11b: Monitoring – Stream Reach Morphology Data Table Little Alamance Creek (Burlington Park) Stream Restoration EEP No. 92372 Reach 1, XS 1 Riffle Station 11+58.48

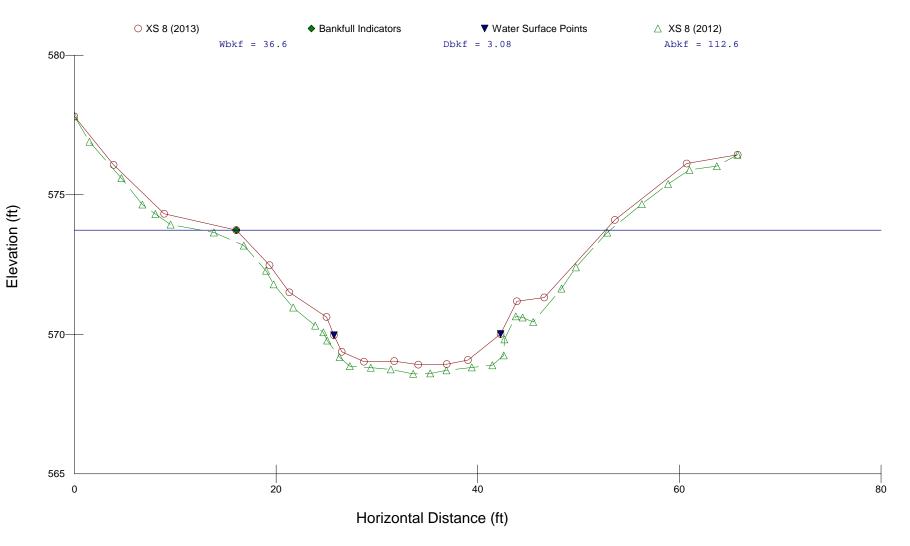

Little Alamance Creek (Burlington Park) Stream Restoration EEP No. 92372 Reach 1, XS 2 Pool Station 13+23.79



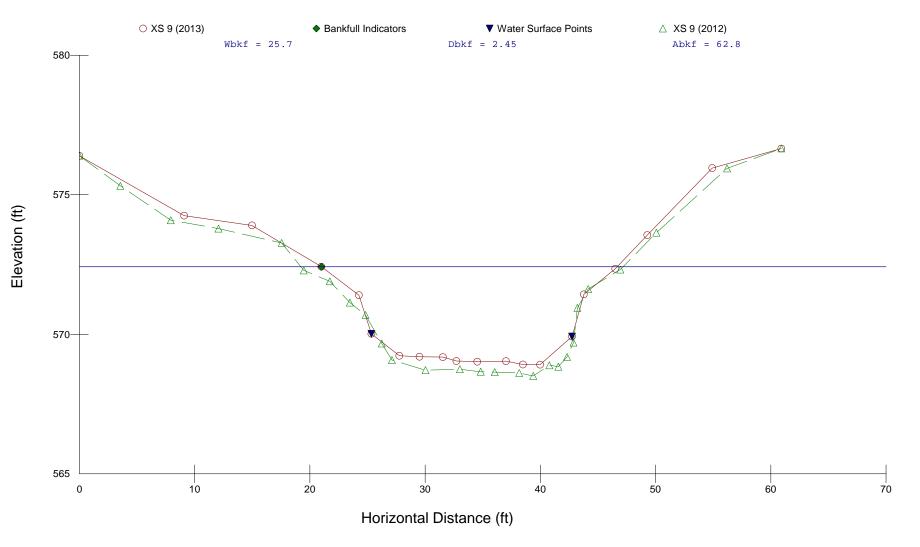
Little Alamance Creek (Burlington Park) Stream Restoration EEP No. 92372 Reach 1, XS 3 Pool Station 13+62.29

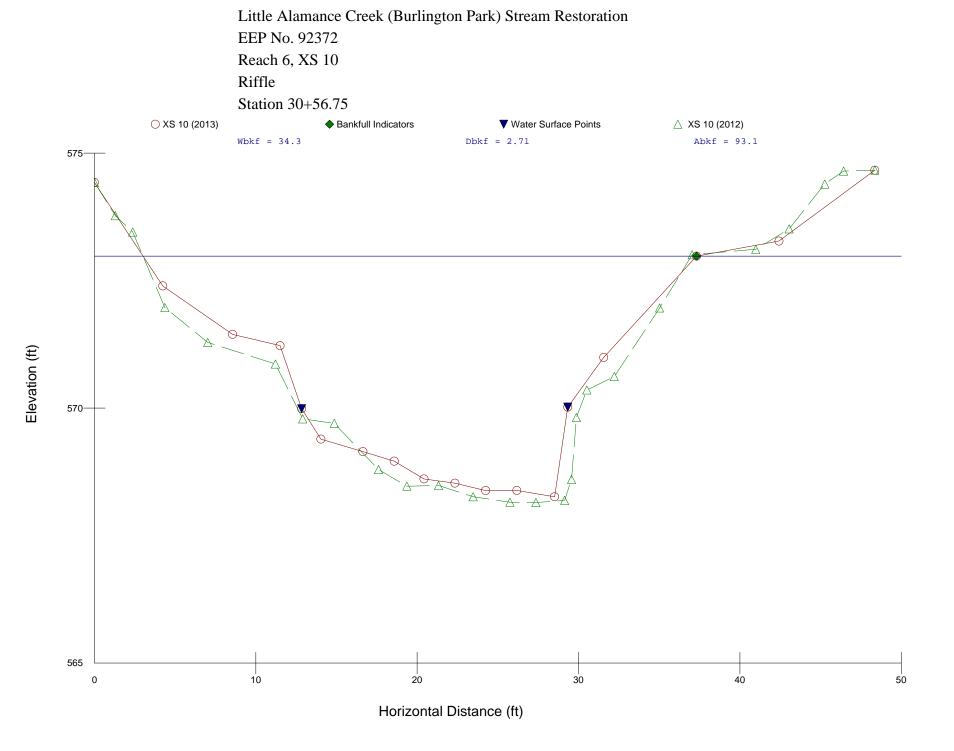


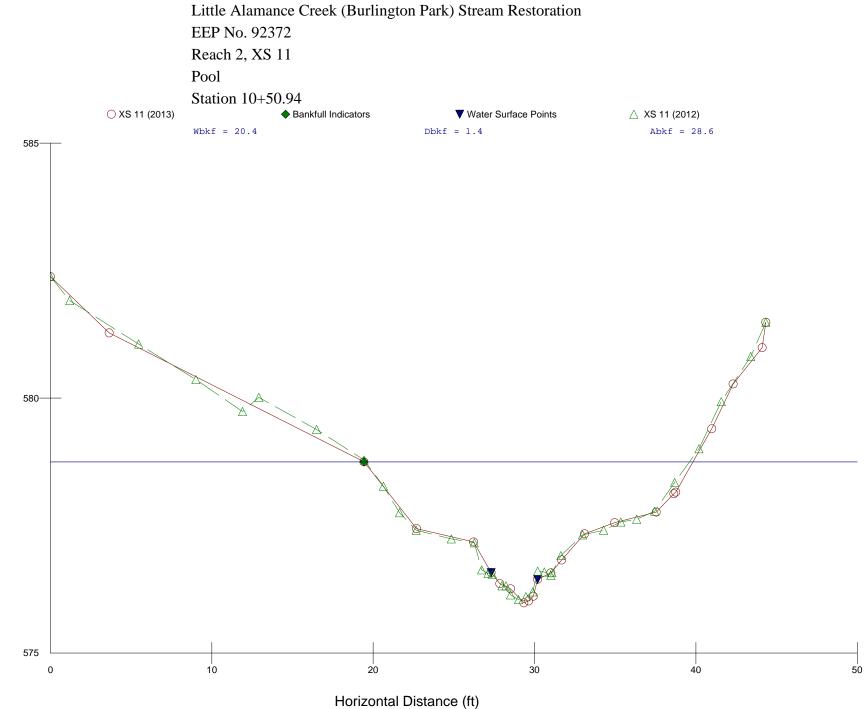

Little Alamance Creek (Burlington Park) Stream Restoration EEP No. 92372 Reach 4, XS 4 Riffle Station 19+69.54

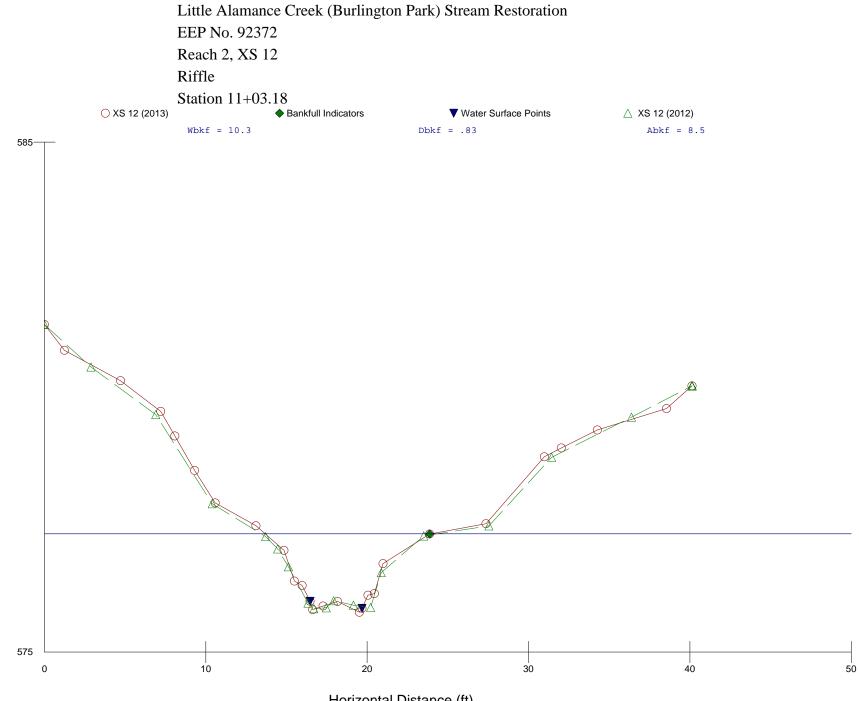


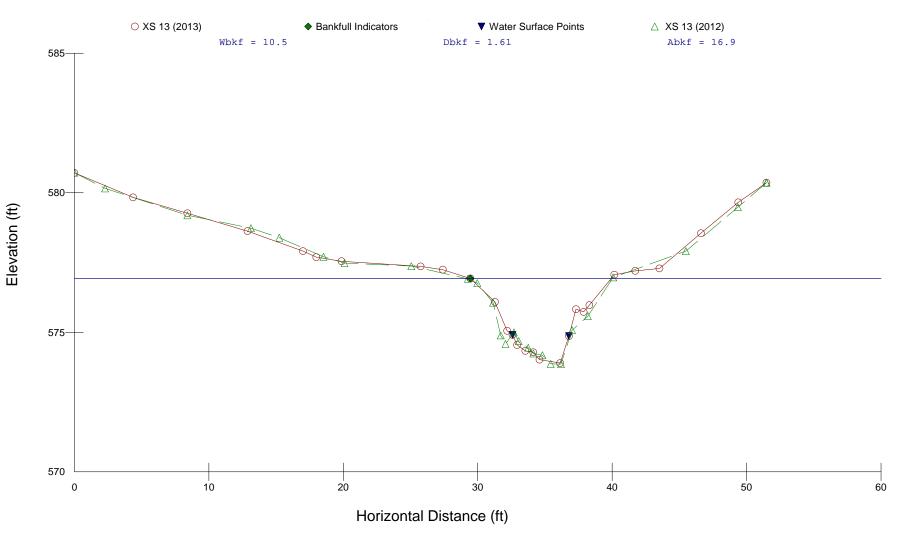
Little Alamance Creek (Burlington Park) Stream Restoration EEP No. 92372 Reach 6, XS 6 Pool Station 28+83.61

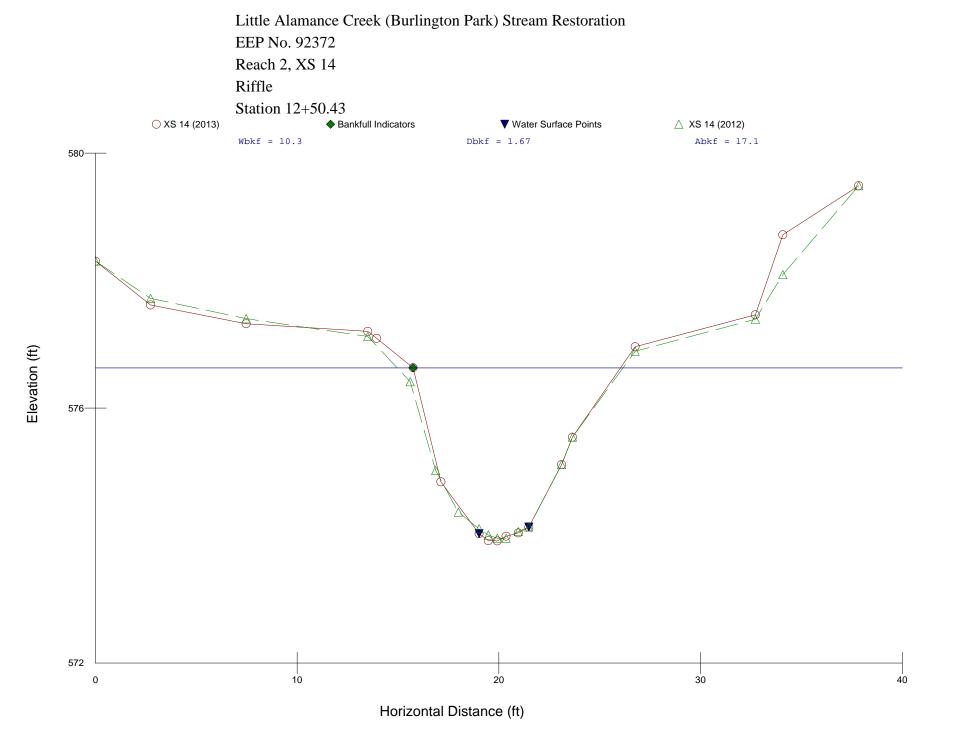




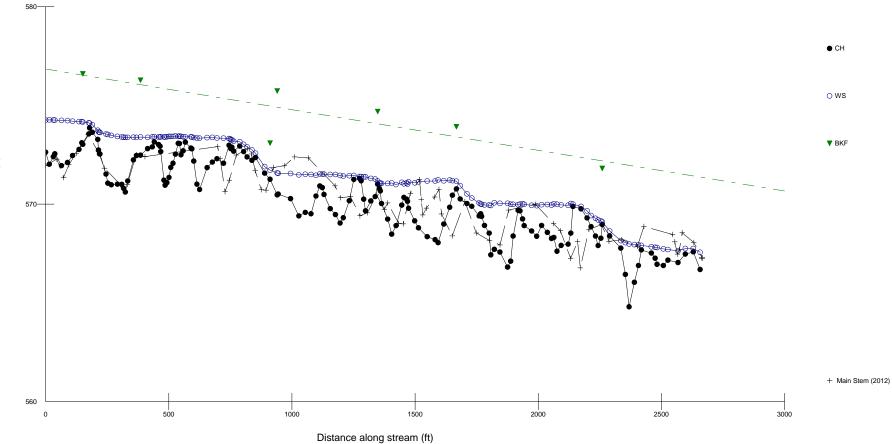

Little Alamance Creek (Burlington Park) Stream Restoration EEP No. 92372 Reach 6, XS 8 Riffle Station 29+35.63


Little Alamance Creek (Burlington Park) Stream Restoration EEP No. 92372 Reach 6, XS 9 Riffle Station 29+57.75

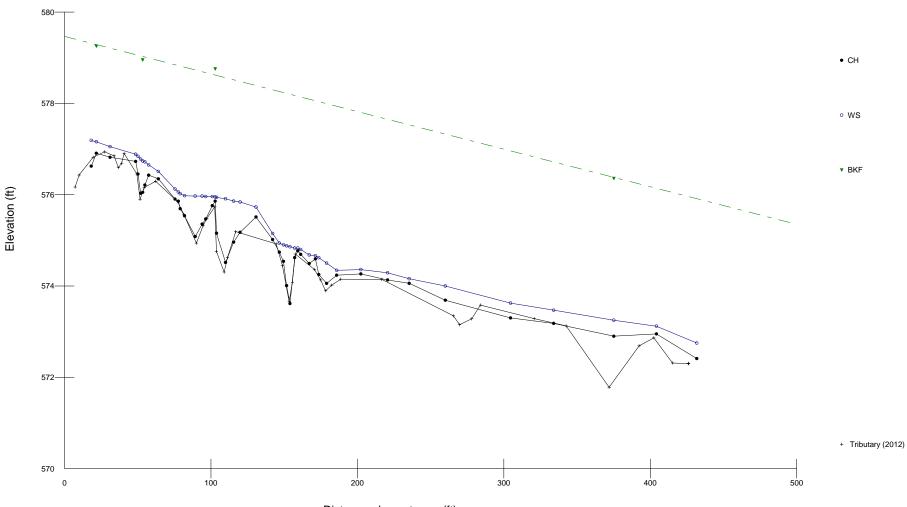

Elevation (ft)

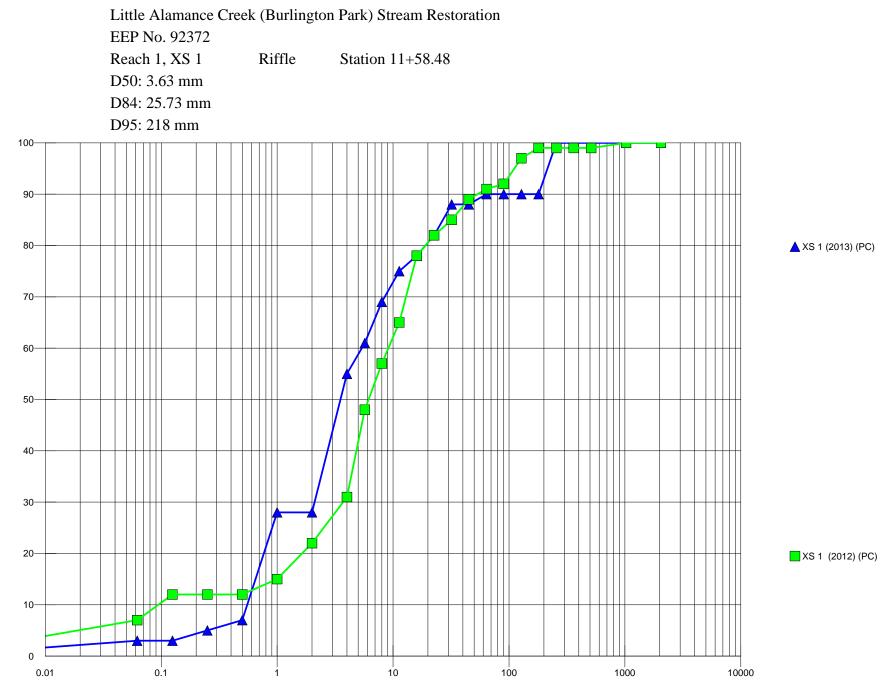


Horizontal Distance (ft)

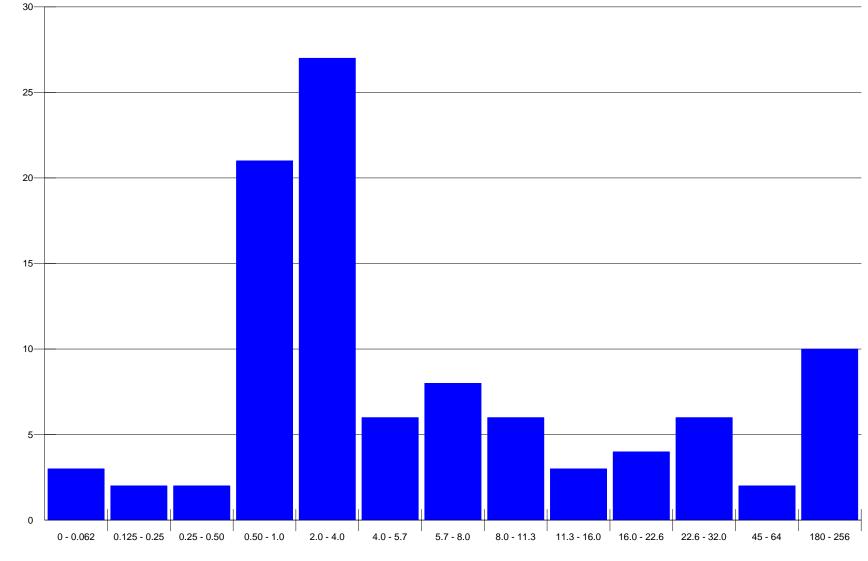

Elevation (ft)

Little Alamance Creek (Burlington Park) Stream Restoration EEP No. 92372 Reach 2, XS 13 Pool Station 11+49.64

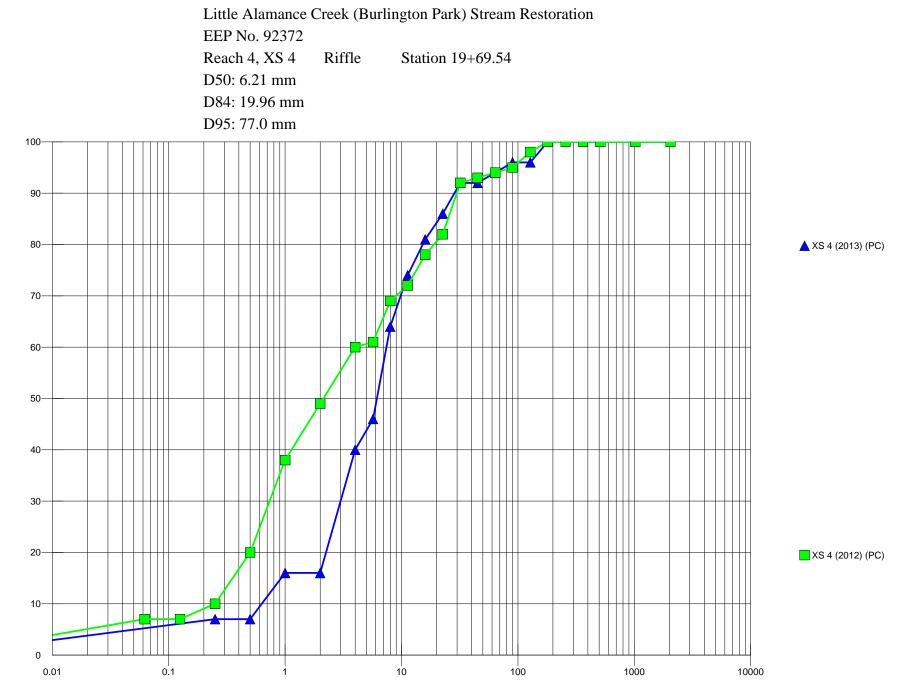



Little Alamance Creek (Burlington Park) Stream Restoration EEP No. 92372 Main Stem Station 0+0.00 to 29+68.44

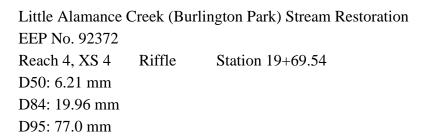
Little Alamance Creek (Burlington Park) Stream Restoration EEP No. 92372 Tributary Station 10+0.00 to 14+40.85

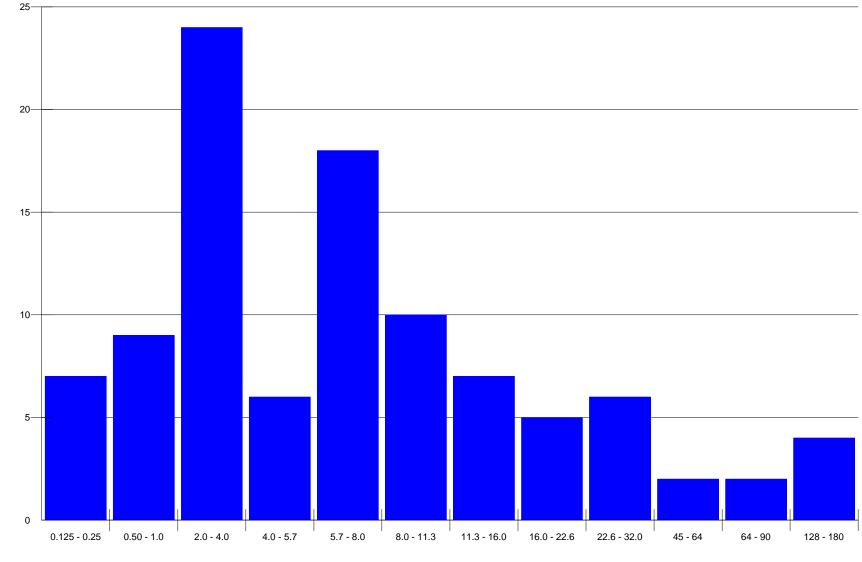

Distance along stream (ft)

Particle Size (mm)

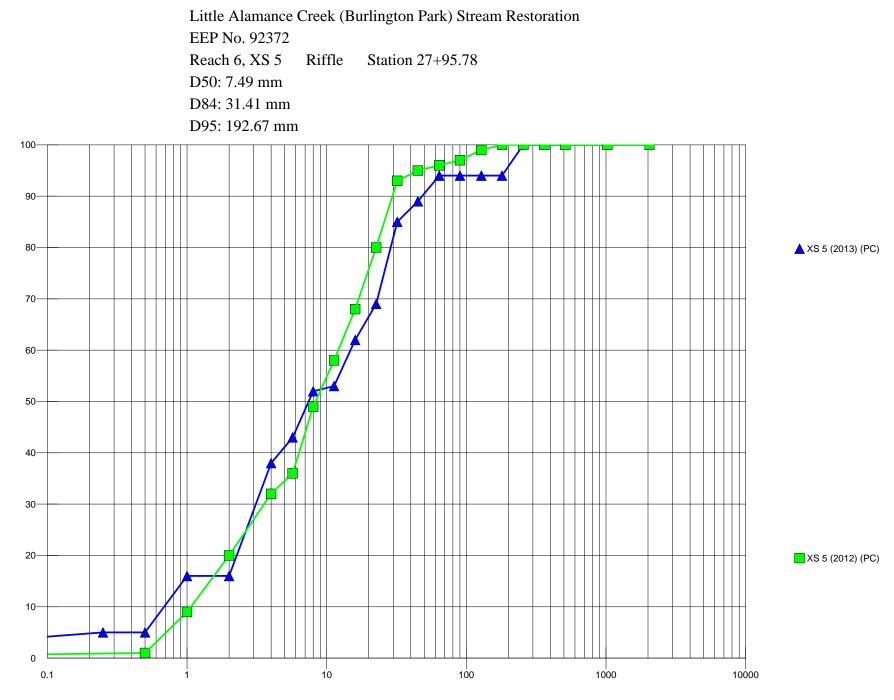

Percent Finer

Little Alamance Creek (Burlington Park) Stream Restoration EEP No. 92372 Reach 1, XS 1 Riffle Station 11+58.48 D50: 3.63 mm D84: 25.73 mm D95: 218 mm

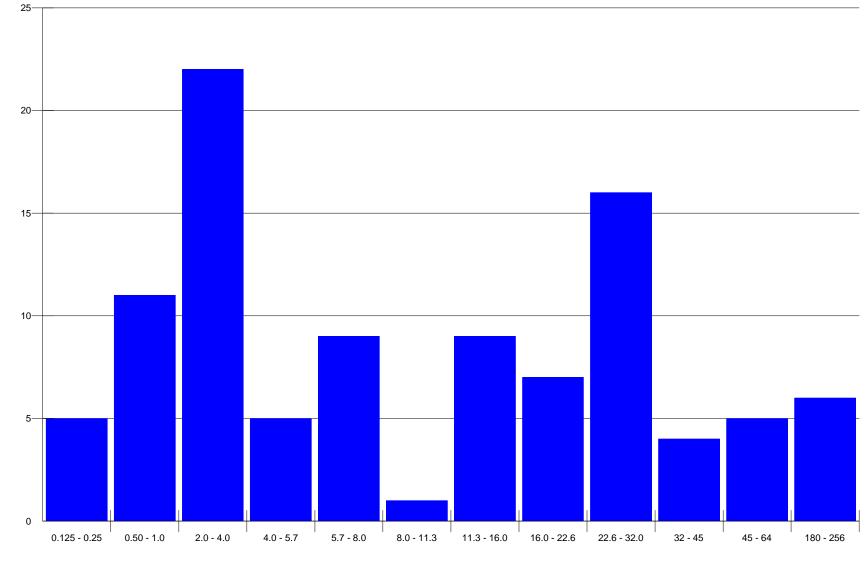

Particle Size (mm)


Percent Retained

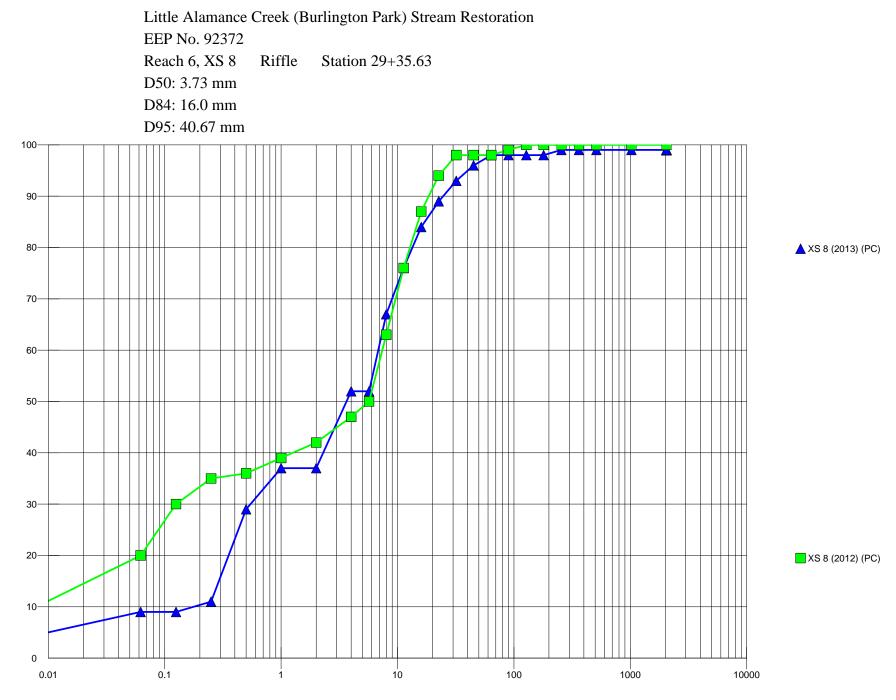
Particle Size (mm)


Percent Finer

Percent Retained

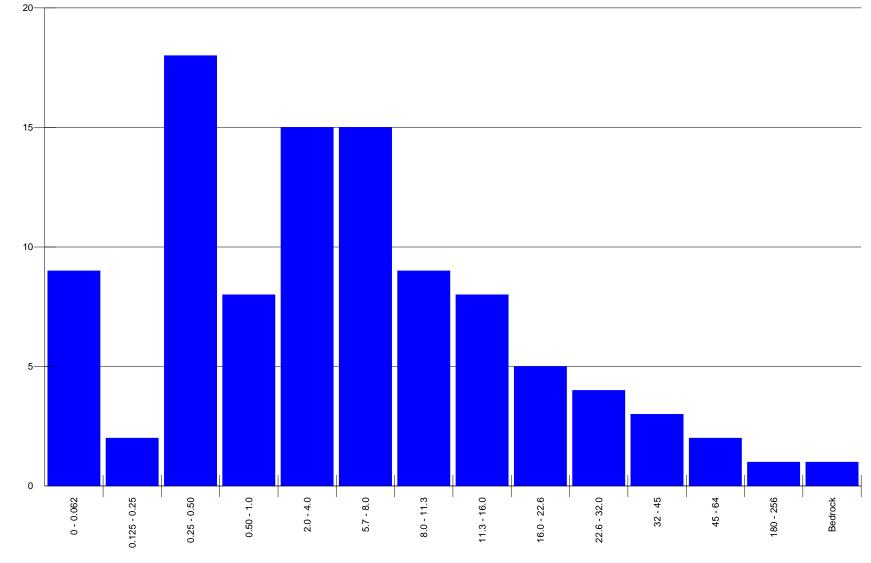

Particle Size (mm)

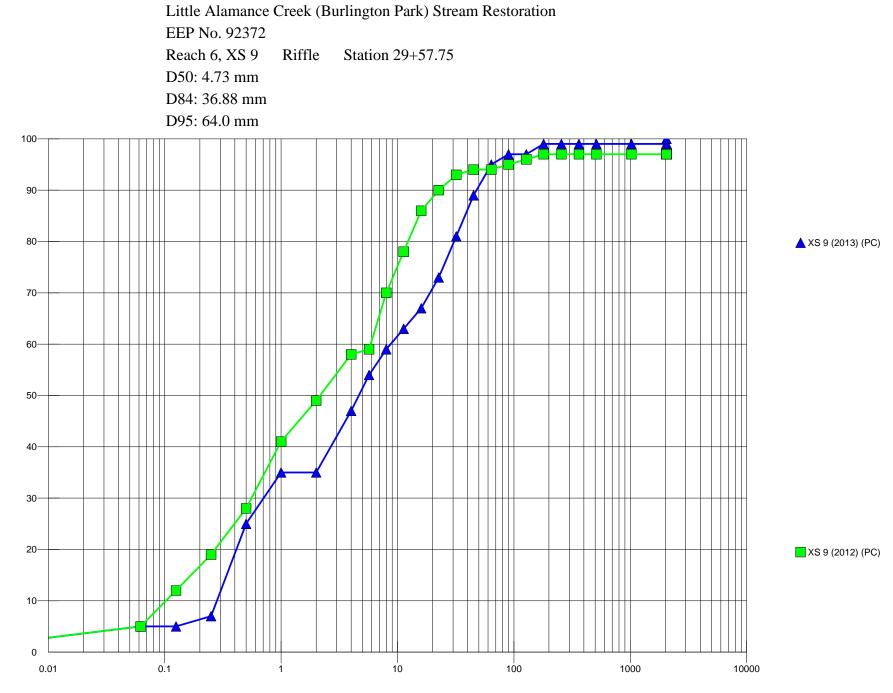
Particle Size (mm)


Percent Finer

Little Alamance Creek (Burlington Park) Stream Restoration EEP No. 92372 Reach 6, XS 5 Riffle Station 27+95.78 D50: 7.49 mm D84: 31.41 mm D95: 192.67 mm

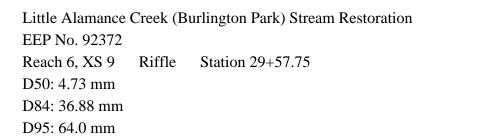
Particle Size (mm)

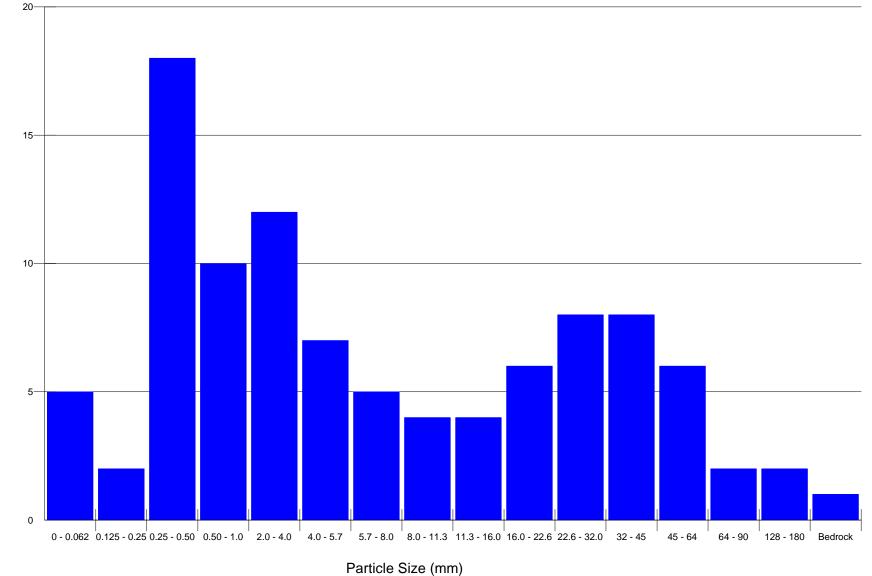

Percent Retained

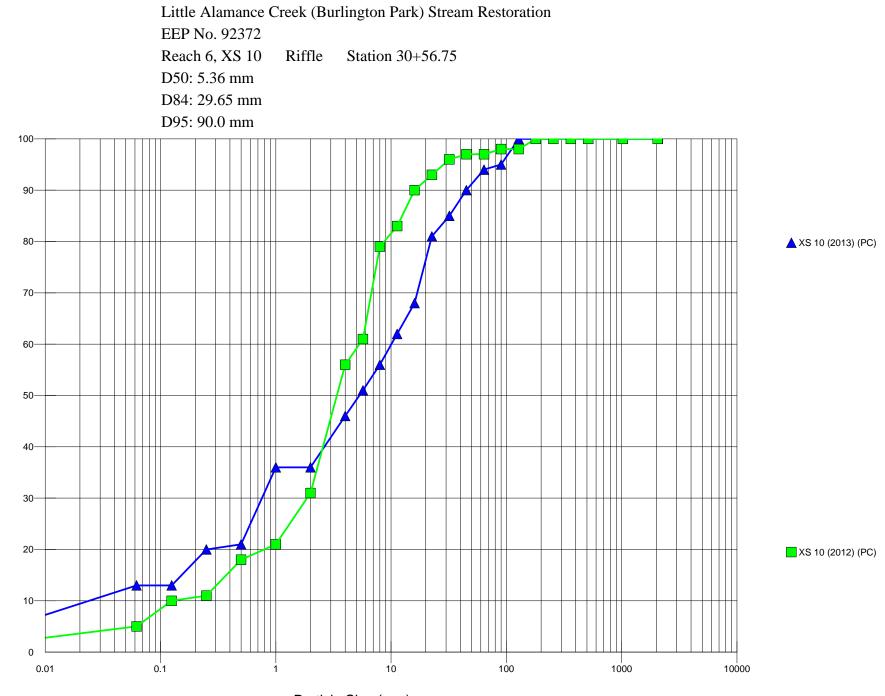

Particle Size (mm)

Percent Finer

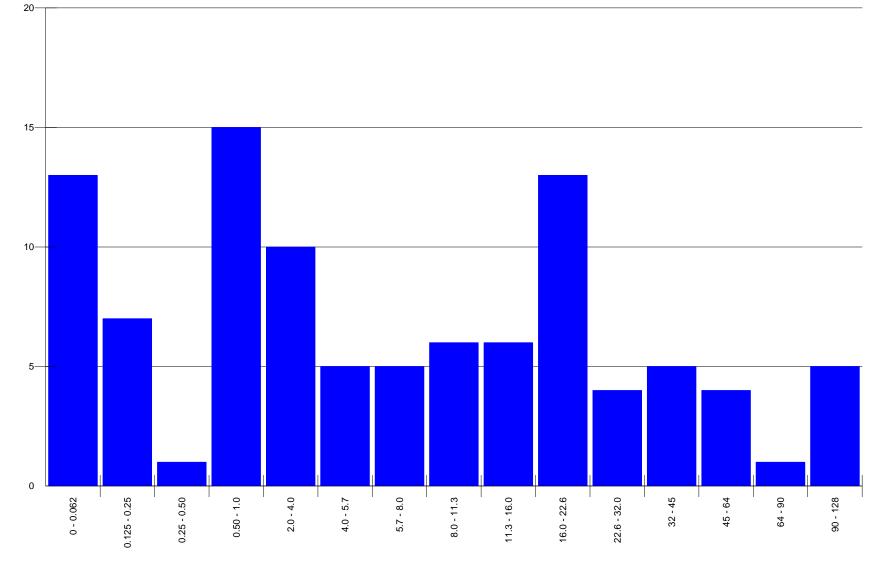
Little Alamance Creek (Burlington Park) Stream Restoration EEP No. 92372 Reach 6, XS 8 Riffle Station 29+35.63 D50: 3.73 mm D84: 16.0 mm D95: 40.67 mm



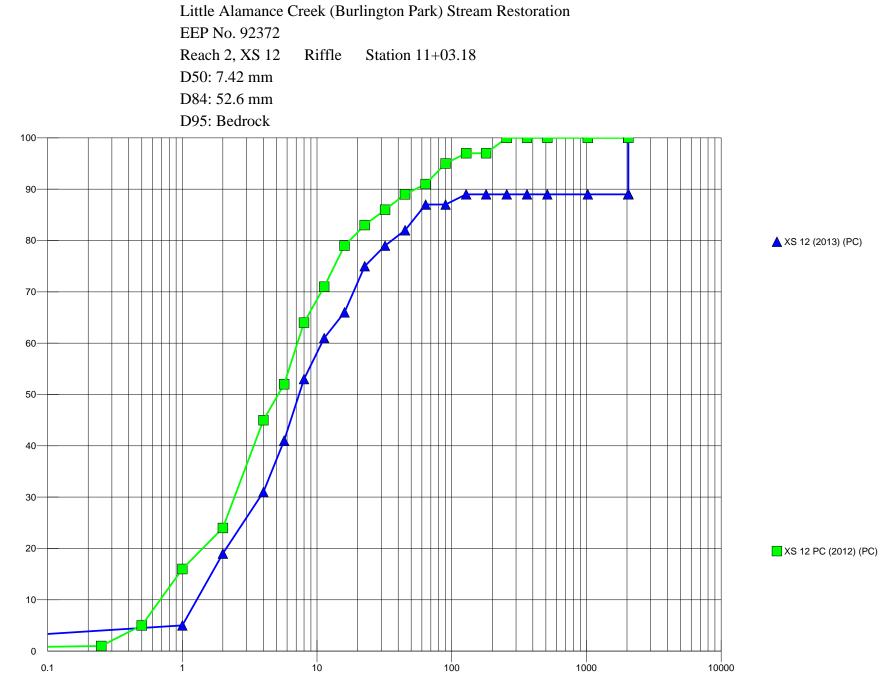

Particle Size (mm)


Particle Size (mm)

Percent Finer

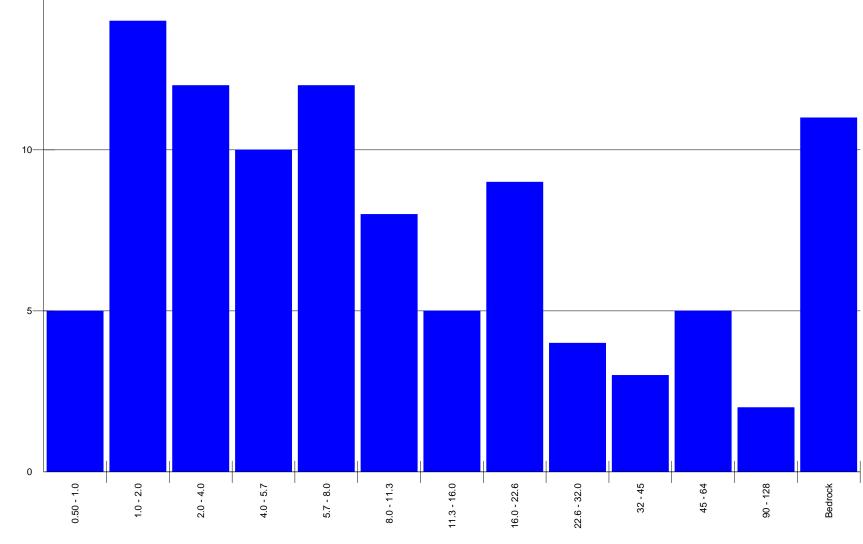

Percent Retained

Particle Size (mm)


Percent Finer

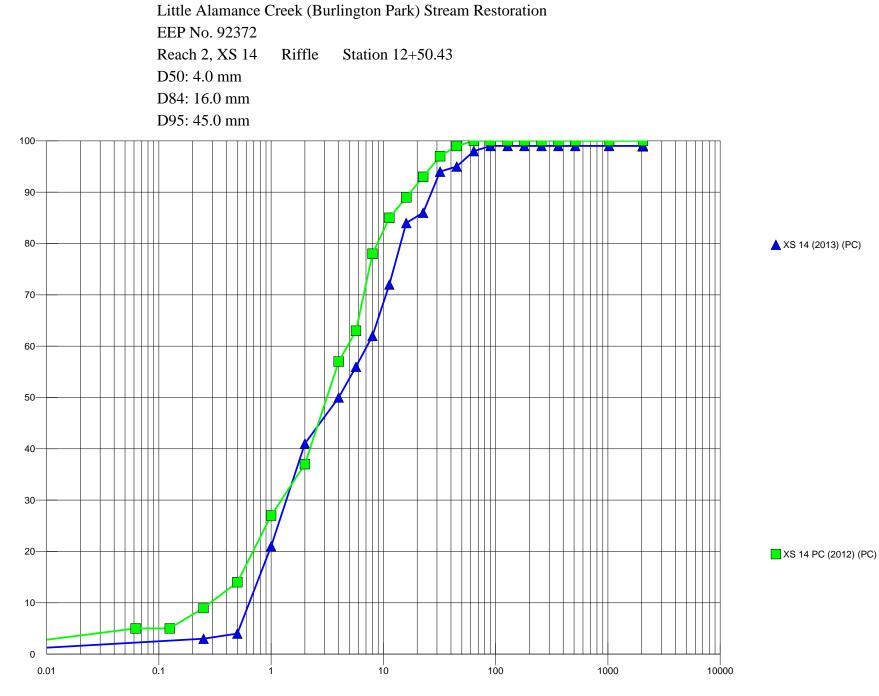
Little Alamance Creek (Burlington Park) Stream Restoration EEP No. 92372 Reach 6, XS 10 Riffle Station 30+56.75 D50: 5.36 mm D84: 29.65 mm D95: 90.0 mm

Particle Size (mm)


Percent Retained

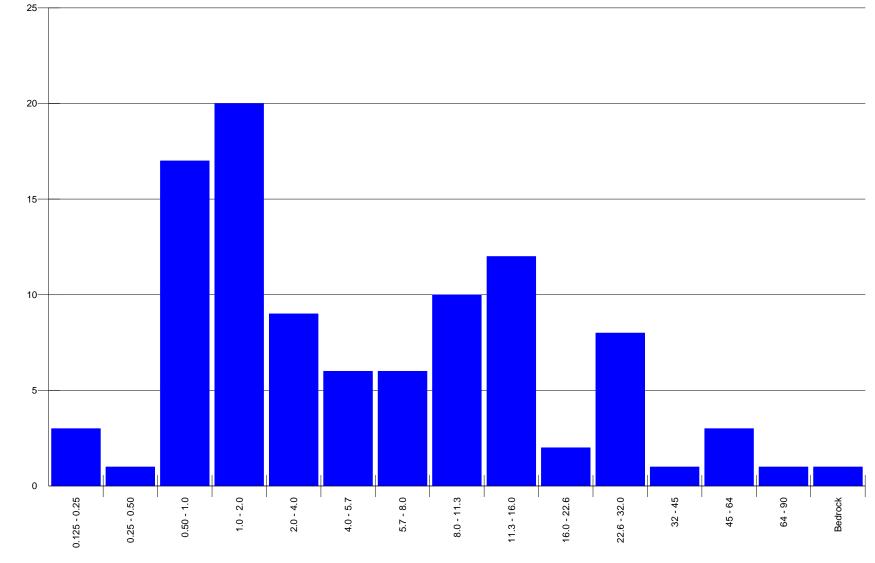
Particle Size (mm)

Percent Finer


Little Alamance Cree	k (Burlingtor	n Park) Stream Restoration	
EEP No. 92372			
Reach 2, XS 12 R	iffle Statio	on 11+03.18	
D50: 7.42 mm			
D84: 52.6 mm			
D95: Bedrock			

15-

Percent Retained


Particle Size (mm)

Particle Size (mm)

Percent Finer

Little Alamance Creek (Burlington Park) Stream Restoration EEP No. 92372 Reach 2, XS 14 Riffle Station 12+50.43 D50: 4.0 mm D84: 16.0 mm D95: 45.0 mm

Particle Size (mm)

Percent Retained

 Table 9: Stream Bank Erosion Pin Data Table

Per discussions with NCEEP, bank pins are not required and therefore were not installed by EEE Consulting.

			Little	e Alam	ance (Creek (m Data ation/E		•	(92372	2) Mair	nstem (2275	f)						
Parameter	Gauge ²	Reg	ional C					g Cond						each(es		, e		Design			Μ	onitoring	Baseline		
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD ⁵	n	Min	Mean	Med	Max	SD ⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD⁵	n
Bankfull Width (ft)				31.8	36.2		42.5				15.1						36.2		19.3	26.3		36.6		
Floodprone Width (ft)				70	94		120				30						>80		47.2	52.7		65.7		
Bankfull Mean Depth (ft)				2.2	2.6		2.9				1.6						2.6		2.09	2.53		3.08		
¹ Bankfull Max Depth (ft	:)				3.9	4		4.1				2.6						4		2.96	3.61		4.6		
Bankfull Cross Sectional Area (ft ²)				79.3	95		125				24.3						95		40.83	68.78		112.77		
Width/Depth Ratio	C				11.6	14		17				9.3						13.8		7.85	10.31		12.26		
Entrenchment Ratio	C				2.1	2.6		3.8				2						>2.2		1.645	2.079		2.488		
¹ Bank Height Ratio	0				1	1.2		1.4				1						1		0.32	0.66		0.83		
Profile																									
Riffle Length (ft)																			62	159.33	137.16	353.24	119.9	5
Riffle Slope (ft/ft)				0.003	0.013		0.025									0.003	0.013	0.025	0.0001	0.003326	0.00345	0.00983	0.0033	5
Pool Length (ft					107.9	293.7		505.4									107.9	293.7	505.4	37.58	99.32	90.19	182.26	44.37	14
Pool Max depth (ft)				5.5	6.1		6.9									5.5	6.1	6.9	3.03	4.4	4.525	5.91	0.8265	10
Pool Spacing (ft)				313.7	473.1		749.5									313.7	473.1	749.5	48.85	147.39	92.07	347.97	115.45	9
Pattern			-	-				-	-				-	-	-	-			-			-	-	-	
Channel Beltwidth (ft)				33	70		255				T					33	70	255	87.3	233		462		
Radius of Curvature (ft					45	115		220									45	115	220	51.2	118.8		280.7		
Rc:Bankfull width (ft/ft)				1.2	3.2		6.1									1.2	3.2	6.1	2	4.5		10.7		
Meander Wavelength (ft)				227	361		559									227	361	559	436.2	454.6		475.2		
Meander Width Ratio	D				0.9	1.9		7									0.9	1.9	7	7.7	17.3		24.1		
												1													
Transport parameters	-	-			_						-						-			_					
Reach Shear Stress (competency) lb/f	2						3	0										30				0.2	6		
Max part size (mm) mobilized at bankful							8	0														55.	7		
Stream Power (transport capacity) W/m	2																								
Additional Reach Parameters																									
Rosgen Classification	n						C/E	/5/1					C/	E4				C 4/1				E4			
Bankfull Velocity (fps								.5										2.5							
Bankfull Discharge (cfs								7.5																	
Valley length (ft			_	-																					
Channel Thalweg length (ft																						2968	3.4		
Sinuosity (ft							1	.2										1.2				1.2			
Water Surface Slope (Channel) (ft/ft)							024										0.0024				0.00			
BF slope (ft/ft																						0.002			
³ Bankfull Floodplain Area (acres																									
⁴ % of Reach with Eroding Banks																									
Channel Stability or Habitat Metric																									
Biological or Othe																									
Shaded cells indicate that these will typically not be filled in.																				-					

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

4 = Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

		Littla /	Vlamar		ook (B	urlinate					eam Da on/EEI				Innam	od Tri	butary	(150 lf	:)						
Parameter	Gauge ²		ional C					g Cond		SIOIAII				each(es				Design			Мс	nitorin	g Basel	ine	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD⁵	n	Min	Mean	Med	Max	SD⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD⁵	n
Bankfull Width (ft	t)				10.9	12		13					15.1				10.9	12	13	9.86	9.89		9.91		
Floodprone Width (ft	t)				27	33.5		40					30				27	33.5	40	8.5	12.5		16.5		
Bankfull Mean Depth (ft	t)				1.1	1.3		1.5					1.6				1.1	1.3	1.5	0.86	1.27		1.67		
¹ Bankfull Max Depth (fl	t)				2	2		2.1					2.6				2	2	2.1	1.43	2.17		2.91		
Bankfull Cross Sectional Area (ft ²	²)				14.8	15.8		16.7					24.3				14.8	15.8	16.7	8.5	12.5		16.5		
Width/Depth Ratio	0				7.1	9.3		11.5					9.3				7.1	9.3	11.5	5.9	8.71		11.52		
Entrenchment Ratio	0				2.1	2.9		3.7					2				2.1	2.9	3.7	2.25	3.38		4.52		
¹ Bank Height Rati	0				1	1.2		1.3					1					1		0.99	1.27		2.56		
Profile																									
Riffle Length (ft	t)																			26.98	8 41.87		59.91		
Riffle Slope (ft/ft	t)				0.015	0.025		0.05		-							0.015	0.025	0.05	0.006	0.01		0.018		
Pool Length (ft					4	18.2		163		-							4	18.2	163	12.96	6 28.2		60.96		
Pool Max depth (ft	t)					2.4												2.4		0.74	2.06		3.26		
Pool Spacing (ft	t)				23.4	34.1		54.8									23.4	34.1	54.8	12.52	30.1		60.61		
Pattern																									
Channel Beltwidth (ft	t)				13.5	24.6		33.7			1						13.5	24.6	33.7	5.5	10.39	[18.97		
Radius of Curvature (ft	t)				15	29		55									15	29	55	5.22	15.81		31.25		
Rc:Bankfull width (ft/ft	t)				1.2	2.4		4.6									1.2	2.4	4.6	1.547	1.784		2.02		
Meander Wavelength (ft	t)				55.8	83.9		111.9									55.8	83.9	111.9	135.7	172.4		209.2		
Meander Width Ratio	0				4.7	7		9.3									4.7	7	9.3	0.556	1.051		1.918		
Fransport parameters																									
Reach Shear Stress (competency) lb/f	:2						0.	71										0.71							
Max part size (mm) mobilized at bankfu	II						4	18																	
Stream Power (transport capacity) W/m	2																								
Additional Reach Parameters																									
Rosgen Classification	n						E	4/1					C/	E4				C4/1				Ε	Ξ4		
Bankfull Velocity (fps	;)						4	.4										4.4							
Bankfull Discharge (cfs	5)						68	3.7																	
Valley length (ft	t)																								
Channel Thalweg length (ft	t)																								
Sinuosity (ft	t)						1	.1										1.1							
Water Surface Slope (Channel) (ft/ft	t)						0.0	095										0.0095							
BF slope (ft/ft	t)																								
³ Bankfull Floodplain Area (acres	5)																								
⁴ % of Reach with Eroding Bank	s																								
Channel Stability or Habitat Metri	с																								
Biological or Othe	er																								

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

4 = Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

Table 10b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Little Alamance Creek (Burlington Park) Stream Restoration/EEP Number (92372) Mainstem (2275 lf)

Parameter		Pre	e-Exis	ting C	Condit	ion		Refe	erence	Read	:h(es)	Data		0	Desigr	ו			As-bu	ilt/Ba	seline	•	
¹ Ri% / Ru% / P% / G% / S%																							
¹ SC% / Sa% / G% / C% / B% / Be%																							
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)	0.2	0.7	2.4	138	216																		
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10																							
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0																							

Shaded cells indicate that these will typically not be filled in.

1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary. The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions.

ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design survey), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-constrution distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the reach. This means that the distributions for these parameters should include data from both the cross-section surveys and the longitudinal profile permits sampling of the BHR at riffles beyond those subject to cross-sections and therefore can be readily integrated and provide a more complete sample distribution for these parameters, thereby providing the distribution/coverage necessary to provide meaningful comparisons.

Table 10b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Little Alamance Creek (Burlington Park) Stream Restoration/EEP Number (92372) Unnamed Tributary (450 lf)

Parameter		Pre	e-Exis	ting C	ondi	tion		Refe	rence	Read	:h(es)	Data		0	Desigr	า			As-bu	ilt/Ba	seline	!
¹ Ri% / Ru% / P% / G% / S%																						
¹ SC% / Sa% / G% / C% / B% / Be%																						
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)	0.2	0.5	3.4	19	53																	
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10																						
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0																						

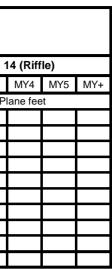
Shaded cells indicate that these will typically not be filled in.

1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary. The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions.


ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design survey), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-constrution distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the reach. This means that the distributions for these parameters should include data from both the cross-section surveys and the longitudinal profile permits sampling of the BHR at riffles beyond those subject to cross-sections and therefore can be readily integrated and provide a more complete sample distribution for these parameters, thereby providing the distribution/coverage necessary to provide meaningful comparisons.

				Tab	ole 11	a. Mo	onito	ring D)ata -	Dimer	nsiona	I Mo	rpholo	ogy S	Sumr	nary	(Dime	ensio	nal Pa	arame	eters -	- Cros	ss Se	ction	is)										
					Littl	e Ala	manc	e Cre	ek (B	urling	ton Pa	ark) S	Strean	n Re	stora	tion/	EEP N	Numb	er (92	2372)	Mains	tem (2275	lf)											
		С	ross S	ection							ection 2							Section							Section	4 (Riff	le)			С	ross S	ection	5 (Riffle	e)	
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3 N	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used		N	AD 83 N	C State	Plane fe	eet			NA	AD 83 NO	C State Pl	ane fee	et			N	AD 83 N	NC State	Plane f	eet			N	AD 83 N	VC State	e Plane f	feet			N	AD 83 N	C State	Plane fe	et	
Bankfull Width (ft)	19.3	19.3	19.63					35.68	35.68	37.23					32.55	32.55	33.33	3				25.62	25.62	22.6					19.43	19.43	19.44				
Floodprone Width (ft)	48.01	48.01	45.1					73.15	73.2	73.27					65.21	65.21	65.18	3				47.46	47.46	43					47.21	47.21	44.04				
Bankfull Mean Depth (ft)	2.46	2.46	2.17					3.62	3.62	3.67					2.74	2.74	2.67					2.09	2.09	1.97					2.1	2.1	2.17				
Bankfull Max Depth (ft)	3.26	3.26	2.92					5.1	5.1	5.38					3.87	3.87	3.91					2.96	2.96	2.65					3.15	3.15	2.98				
Bankfull Cross Sectional Area (ft ²)	47.41	47.41	42.63					129	129	136.8					89.22	89.22	88.97	7					53.43						40.83	40.83	42.26				
Bankfull Width/Depth Ratio	7.85	7.85	9.05					9.86	9.86						11.88	11.88	12.48						12.26	11.47					9.25	9.25	8.96				
Bankfull Entrenchment Ratio		2.49	2.3					2.05	2.05	1.97					2	2	1.96						1.85	1.9					2.43	2.43	2.27				
Bankfull Bank Height Ratio		1.06						1	1	0.99					1	1	0.98						1.75						0.95		0.97				
Cross Sectional Area between end pins (ft ²)									257.2							159.1		Ļ						207.7						141.3					
d50 (mm)	6.21	6.21	3.63					N/A	N/A	N/A					N/A	N/A	N/A					2.18	2.18	6.21					8.37	8.37	7.49				
		C	Cross S	Section	6 (Poo	ol)			C	ross Se	ection 7	(Pool))			C	Cross S	Section	8 (Riff	le)			С	ross S	Section	9 (Riff	le)			C	ross Se	ection 1	0 (Riffl	e)	
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3 M	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used		N	AD 83 N	C State	Plane fe	eet			NA	AD 83 NO	C State Pl	ane fee	ət			N	AD 83 N	NC State	Plane f	eet			N	AD 83 N	VC State	e Plane f	feet			N	AD 83 N	C State	Plane fe	et	
Bankfull Width (ft)	36.6	36.6	40.9					31.31	31.31	33.33					34.88	34.88	36.62	2				21.79	21.79	25.66					30.6	30.6	34.3				
Floodprone Width (ft)	60.21	60.21	60.42					56.8	56.8	58.36					65.72	65.72	65.79)				47.34	47.34	52.87					48.37	48.37	48.37				
Bankfull Mean Depth (ft)	3.08	3.08	4.25					3.15	3.15	3.47					3.08	3.08	3.08					2.34	2.34	2.45					2.25	2.25	2.72				
Bankfull Max Depth (ft)	4.6	4.6	6.19					4.21	4.21	4.65					4.6	4.6	4.82					3.11	3.11	3.51					3.81	3.81	4.72				
Bankfull Cross Sectional Area (ft ²)	112.8	112.8	174.1						98.77						107.3	107.3	112.6	6				50.91	50.91	62.79					68.86	68.86	93.13				
Bankfull Width/Depth Ratio	11.88	11.88	9.64					9.94	9.94								11.89					9.31		10.47					13.6		12.61				
Bankfull Entrenchment Ratio		1.65	1.48					1.81	1.81							1.88	1.8					2.17	2.17	2.06					1.58	1.58	1.41				
Bankfull Bank Height Ratio		1.38	1					1.06	1.06	0.99					1.02	1.02	1					1	1	1					1.28	1.28	1				
Cross Sectional Area between end pins (ft ²)								210.6	210.6						271.4		248.8							229.9					-	-	166.5				
d50 (mm)	N/A	N/A	N/A					N/A	N/A	N/A					5.7	5.7	3.73					2.22	2.2	4.73					3.52	3.52	5.36				

1 = Widths and depths for monitoring resurvey will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."

_											•					_			-	•						
Та	able 1	1a. I	vionit	oring	Data	- Dim	nensi	onal	Morp	holo	gy Su	Imma	ry (Di	mens	sional	Para	mete	rs – (cross	Sect	ions)					
Li	ittle A	lama	ince (Creek	(Burl	lingto	n Pa	rk) St	ream	Rest	orati	on/EE	EP Nu	ımber	r (923	72) U	nnan	ned T	ributa	ary (4	50 lf)					
					11 (Poo			Ĺ				12 (Riff			Ĺ	· · ·			13 (Po		<i>,</i>		Cı	oss S	ection	14
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	Т
Record elevation (datum) used		N/	AD 83 N	IC State	Plane fe	eet			I	NAD 83	State F	Plane fee	et			1	NAD 83	State P	lane fee	et			I	NAD 83	State F	Pla
Bankfull Width (ft)	15.57	15.57	19.85					9.91	9.91	10.26					9.86	9.86	10.49					10.08	10.08	9.16		Τ
Floodprone Width (ft)	24.74	24.74	41.54					22.32	22.32	22.38					44.52	44.52	46.56					36.5	36.2	37.12		
Bankfull Mean Depth (ft)	0.69	0.69	1.38					0.86	0.86	0.83					1.67	1.67	1.61					1.52	1.52	1.64		Τ
Bankfull Max Depth (ft)			2.78					1.43	1.43	1.54					2.91	2.91	3.03					2.46	2.46	2.71		
Bankfull Cross Sectional Area (ft ²)	10.73	10.73	27.45					8.5	8.5	8.5					16.5	16.5	16.85					15.37	15.37	15		
Bankfull Width/Depth Ratio	22.57	22.57	14.38					11.52	11.52	12.36					5.9	5.9	6.52					6.63	6.63	5.59		
Bankfull Entrenchment Ratio	1.59	1.59	2.09					2.25	2.25	2.18					4.51	4.51	4.44					3.59	3.59	4.05		Τ
Bankfull Bank Height Ratio	2.34	2.34	2.41					1	1	1					1	1	1					1.19	1.19	1.1		Τ
Cross Sectional Area between end pins (ft ²)	113.4	113.4	110.8					76.3	76.3	74.7					133.6	133.6	129.9					60.3	60.3	54.3		
d50 (mm)	N/A	N/A	N/A					5.21	5.21	7.42					N/A	N/A	N/A					3.3	3.3	4		

1 = Widths and depths for monitoring resurvey will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot accept for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculat Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."

													Table 11										_	
							_		Little	Alamar	nce Cre	ek (E	Burlingto	n Park	 Streat 	am Res	storati	on/E	<u>ΕΡ Νι</u>	Imper	· (923	72) M	ainste	em (2
Parameter			Baselir	ne					MY-	1					MY-	2					M	(- 3		
Dimension and Substrate - Riffle only	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD ⁴	n
Bankfull Width (ft)	19.3	26.3	23.71	36.6	6.7	6	19.3	26.3	23.71	36.6	6.7	6	19.4	26.4	24.13	36.62	7.4	6						
Floodprone Width (ft)	47.2	52.7	47.74	65.7	7.8	6	47.2	52.7	47.74	65.7	7.8	6	43	49.86	46.74	65.8	8.6	6						
Bankfull Mean Depth (ft)	2.09	2.53	2.3	3.08	0.36	6	2.09	2.53	2.3	3.08	0.36	6	1.97	2.43	2.31	3.08	0.41	6						
¹ Bankfull Max Depth (ft)	2.96	3.61	3.19	4.6	0.64	6	2.96	3.61	3.19	4.6	0.64	6	2.65	3.6	3.245	4.82	0.94	6						
Bankfull Cross Sectional Area (ft ²)	40.83	68.78	52.17	112.77	24.7	6	40.83	68.78	52.17	112.77	24.7	6	42.26	66.34	53.665	112.64	29.9	6						
Width/Depth Ratio	7.85	10.31	10.32	12.26	2.4	6	7.85	10.31	10.32	12.26	2.4	6	8.96	10.74	10.97	12.61	1.5	6						
Entrenchment Ratio	1.645	2.079	2.02	2.488	0.37	6	1.645	2.079	2.02	2.488	0.37	6	1.41	1.96	1.98	2.3	0.33	6						
¹ Bank Height Ratio	0.9	1	1	1.01	0.006	6	0.99	1	1	1.01	0.006	6	0.98	0.995	0.992	1	0.006	6						
Profile																								
Riffle Length (ft)	62	159.33	137.16	353.24	119.9	5	62	159.33	137.16	353.24	119.9	5	26.55	52.64	42.12	101.02	29.9	5						
Riffle Slope (ft/ft)	0.0001	0.003326	0.00345	0.00983	0.0033	5	0.0001	0.003326	0.00345	0.00983	0.0033	5	0.003890	0.0116	0.0133	0.0180	0.0070	5						
Pool Length (ft)	37.58	99.32	90.19	182.26	44.37	14	37.58	99.32	90.19	182.26	44.37	14	24.23	124.2	132.17	217.92	55.56	14						
Pool Max depth (ft)	3.03	4.4	4.525	5.91	0.8265	14	3.03	4.4	4.525	5.91	0.8265	14	1.3	2.45	2.63	3.21	0.963	14						
Pool Spacing (ft)	48.85	147.39	92.07	347.97	115.45	9	48.85	147.39	92.07	347.97	115.45	9	31.69	86.5	69.97	214.55	58.43	9						
Pattern																								
Channel Beltwidth (ft)	87.3	233		462											_									
Radius of Curvature (ft)	51.2	118.8		280.7												Dottorn (data will n	ot turniou		ollogtod	unlogo	vieuel de	ata dimu	onciona
Rc:Bankfull width (ft/ft)	2	4.5		10.7												Pattern	uala wili n	or typica	ally be c			fts from		
Meander Wavelength (ft)	436.2	454.6		475.2																				
Meander Width Ratio	7.7	17.3		24.1																				
Additional Reach Parameters																								
Rosgen Classification			E4				1		E4						E4									
Channel Thalweg length (ft)			2673						267						267;									
Sinuosity (ft)			1.6						1.6						1.6									
Water Surface Slope (Channel) (ft/ft)			0.0024	2					0.002						0.002									
BF slope (ft/ft)			0.0024						0.002						0.002									
³ Ri% / Ru% / P% / G% / S%			0.0020						0.002				<u> </u>		0.002				-					
³ SC% / Sa% / G% / C% / B% / Be%																			-				┌──┦	
³ d16 / d35 / d50 / d84 / d95 /																				+			├── ┥	
² % of Reach with Eroding Banks																	1							
Channel Stability or Habitat Metric																								
Biological or Other																								
Shaded cells indicate that these will typically not b	e filled in																							

Shaded cells indicate that these will typically not be filled in. 1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table 3 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave 4. = Of value/needed only if the n exceeds 3

(2	275 li	F)										
			MY	- 4					MY	- 5		
1	Min	Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD^4	n
_												
_												
_												
_												
onal	data o	r profile	data ind	licate								
_												

									l ittle	Δlam	ance			it Table lingtoi						ream F /FFP N						rit
Parameter			Base	eline					MY		lanoe	0100		inigtoi	MY			00101			MY		012)	Jiiia		
Dimension and Substrate - Riffle only	Min	Mean	Med	Мах	SD^4	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD^4	n	Min	М
Bankfull Width (ft)	9.86	9.89		9.91			9.86	9.89		9.91			9.16	9.71		10.26									1	
Floodprone Width (ft)	8.5	12.5		16.5			8.5	12.5		16.5			22.38	29.75		37.12										
Bankfull Mean Depth (ft)	0.86	1.27	Ì	1.67			0.86	1.27		1.67			0.83	1.24		1.64				1					1	
¹ Bankfull Max Depth (ft)	1.43	2.17	Ì	2.91			1.43	2.17		2.91			1.54	2.13		2.17				1					1	
Bankfull Cross Sectional Area (ft ²)	8.5	12.5		16.5			8.5	12.5		16.5			5.3	9.18		12.36										
Width/Depth Ratio	5.9	8.71		11.52	2		5.9	8.71		11.52			4.05	8.21		12.36										
Entrenchment Ratio	2.25	3.38		4.52			2.25	3.38		4.52			1.1	1.64		2.18										
¹ Bank Height Ratio	0.99	1.27		2.56			0.99	1.27		2.56			0.99	1.29		1.6										
Profile																										
Riffle Length (ft)	26.98	41.87	1	59.91			26.98	41.87		59.91			15.83	29.07		61.12				1					1	
Riffle Slope (ft/ft)	0.006	0.0104	Ì	0.018	;		0.006	0.0104		0.018			0.003	0.022		0.046				1					1	
Pool Length (ft)	12.96	28.2		60.96	;		12.96	28.2		60.96			8.2	16.84		23.12										
Pool Max depth (ft)	0.74	2.06		3.26			0.74	2.06		3.26			0.63	1.33		2.22										
Pool Spacing (ft)	12.52	30.1		60.61			12.52	30.1		60.61			12.03	14.78		14.88										
Pattern																										
Channel Beltwidth (ft)	5.5	10.39	1	18.97	<i>,</i>										İ.						İ.					
Radius of Curvature (ft)	5.22	15.81	Ì	31.25	i										İ.	D <i>II</i>										
Rc:Bankfull width (ft/ft)	1.547	1.784		2.02												Patter	n data w	/ill not t	ypically	be collect sigi	ed unles hificant s				nal data	or p
Meander Wavelength (ft)	135.7	172.42		209.2	2																_					
Meander Width Ratio	0.556	1.051		1.918	3																					
Additional Reach Parameters																										
Rosgen Classification			E	4			1		E	4					E	4									-	_
Channel Thalweg length (ft)			426						426.						426											
Sinuosity (ft)			1.0						1.0						1.0											
Water Surface Slope (Channel) (ft/ft)			0.00						0.00						0.00										+	
BF slope (ft/ft)			0.00						0.00						0.00										+	
³ Ri% / Ru% / P% / G% / S%				1																1	1					
³ SC% / Sa% / G% / C% / B% / Be%																										
³ d16 / d35 / d50 / d84 / d95 /																				1						⊢
² % of Reach with Eroding Banks																	8								1	
Channel Stability or Habitat Metric							1												1						1	
Biological or Other							1												1						1	

Shaded cells indicate that these will typically not be filled in. 1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table

3 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

4. = Of value/needed only if the n exceeds 3 Note: Calculations for the Unnamed Tributary are less than 3, which means that calculating media, SD, etc is not statistically correct

ributa	ry (45	0 lf)								
	MY						MY	- 5		
Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD^4	n
										_
r profile	data ind	icate								
									┝──┨	

Appendix E: Hydrologic Data

Table 12: Verification of Bankfull Events Figure 9: Monthly Rainfall Data

Insert Table 12: Verification of Bankfull Events

Crest gauges were installed during Monitoring Year 1 field work. In July of monitoring year 2, there was a short period of several heavy rainfall events. As a result, Little Alamance Creek flooded and the crest gauge did not accurately record the flood event. Photographs of the event are shown below.

July 2013 Storm Event

View of Rail Road at PS1 July 3, 2013

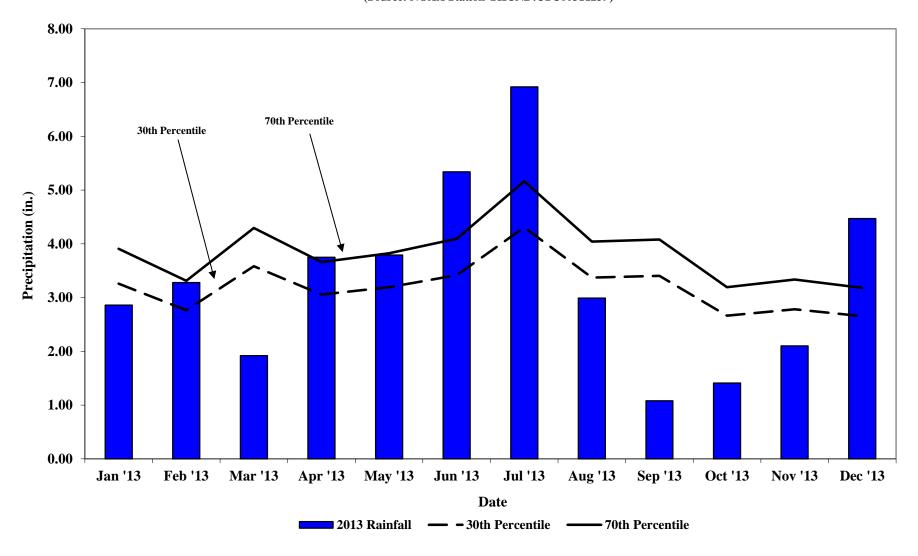
View of water gauge on main tributary July 3, 2013

Bridge at XS 5 July 3, 2013

View of Bridge at XS 4 July 3, 2013

Little Alamance (Burlington Park) Stream Restoration; NCEEP Project No. 92372; NCEEP Contract No. 4998; Monitoring Year 2 of 5; Submitted: January 2014 FINAL

Appendix E



View from XS 7 July 3, 2013

View from PS 2, level spreader July 3, 2013

LittleAlamance Creek 30-70 Percentile Graph Burlington, North Carolina (Source: NOAA Station GHCND:USC00311239)

